
.assified
CLASSIFICAION OF THIS PAGE 6P

P, 09RT.OCUMENTA"ION PAGE -... j

~~~~~ 1-~ 3 2 8 ~ . b. RESTRIICTIVE MARKINGS
AD-A213 2581,..

3 DISTRIBUTIONIAVAILAMILITY OF REPORT

• ,4 -. 7, Unlimited
4. PERFORMING ORGANIZATION REPORT NUMER(SER(S)

TR 89-1040
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable)

Cornell University Office of Naval Research
6c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Department of Computer Science 800 North Quincy Street
Upson Hall, Cornell University 8 rtinc Street
Ithaca, NY 14853 Arlington, VA 22217-5000

8a. NAME OF FUNOINGI/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
Office of Naval Research N000014-86-K-0092

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT800 North Quincy Street ELEMENT NO NO. NO. ACCESSION NO
Arlington, VA 22217-5000

1, TITLE (Include Security Classification)

Designing Distributed Services Using Refinement Mappings

12. PERSONAL AUTHOR(S)
Jacob Itzhack Aizikowitz

13a TYPE OF REPORT 13b. TIME COVERED j14. DATE OF REPORT (Year, Month, Day) IIS. PAGE COUNT
Interim FROM TO I September 29, 1989 81

16, SUPPLEMENTARY NOTATION "

I7. COSATI CODES _ 18. SUBJECT TERMS (Continue on reverie if necessary and identify by block number)
FIELD GROUP SUB-GROUP -distributed services, client/server, refinement mapping,

verification, assertional reasoning

-9 ABSTRACT (Continue on reverse if necessary and identify by block number) ..
The thesis addresses the design of multiple-server implementations for services in
distributed systems--a generalization of the replication management problem. A frequently
used correctness criteria for replication management is that clients of a service not
be able to distinguish a single-server implementation from one that involves multiple servers
Our approach formalizes this idea. It is based on viewing a single-server implementation
of a service as a specification of that service. A multiple-server implementation is
considered correct iff it implements this single-server based specification.

e-sv-ftav program proof outlines can be viewed as specifications and, using refinement
mappings, define what it means for one proof outline to implement another. The notion of
a structural refinement, which formalizes the relationship between a program and the
result of performing step-wise refinement, is defined. When one proof outline is a
structural refinement of the other, simplified proof obligations can be used to show that
one implements the other. -- '.'." - _ (con't over)

20, DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
W UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 OTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOLFred B. Schneider (607) 255-9221
DD FORM 1473, 84 MAR 83 APR edition m., Itc used untIl exhausted. SECURITY CLASSIFICATION OF THIS PAGE

S. ~ All otheor editioni are obsolete.89 10 10088



Finally, the methodology for designing a multiple-server implementation of a service
is presented. The methodology is based on structural refinement and on viewing proof
outlines as specifications. A designer defines a refinement mapping to express the
relationship between the state space of a given single-server implementation of a
service and the state space of the desired multiple-server implementation. Using
this refinement mapping, a provably correct multiple-server implementation is
derived from the single server one. Different refinement mappings as well as
different single-server based specifications result in different implementations.
Examples illustrate the concepts and! the methodology.

A 1c0son For

VT Z

B;'

tr i b t icz/

A';:2. Ccd
I/.,) a ,/ r

Dis SpIl



DESIGNING DISTRIBUTED SERVICES USING

REFINEMENT MAPPINGS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Jacob Itzhack Aizikowitz

January 1990



®Jacob Itzhack Aizikowitz 1990

ALL RIGHTS RESERVED



'4

DESIGNING DISTRIBUTED SERVICES USING REFINEMENT MAPPINGS

Jacob Itzhack Aizikowitz, Ph.D.

Cornell University 1990

The thesis addresses the design of multiple-server implemeutations for services

in distributed systems-a generalization of the replication management problem.

A frequently used correctness criteria for replication management is that clients

of a service not be able to distinguish a single-server implementation from one

that involves multiple servers. Our approach formalizes this idea. It is based

on viewing a single-server implementation of a service as a specification of that

service. A multiple-server implementation is considered correct iff it implements

this single-server based specification.

We show how program proof outlines can be viewed as specifications and, us-

ing refiement mappings, define what it means for one proof outline to implement

another. The notion of a structural refinement, which formalizes the relationship

between a program and the result of performing step-wise refinement, is defined.

When one proof outline is a structural refinement of the other, simplified proof

obligations can be used to show that the one implements the other.

Finally, a methodology for designing a multiple-server implementation of a

service is presented. The methodology is based on structural refinement and on



viewing proof outlines as specifications. A designer defines a refinement map-

ping to express the relationship between the state space of a given single-server

implementation of a service and the state space of the desired multiple-server

implementation. Using this refinement mapping, a provably correct multiple-

server implementation is derived from the single server one. Different refinement

mappings as well as different single-server based specifications result in different

implementations. Examples illustrate the concepts and the methodology.



Biographical Sketch

Jacob (actually, Yaacov) Aizikowitz was born April 12, 1951 in Hadera, Israel,

to the delight of his parents and sister. He graduated from Hadera's high school

eighteen years later, and in August 1969 left home to serve in the army; he now

holds the rank of Major (Reserve). During the three years of mandatory service,

Jacob's focus shifted from physics to computer science, and in October 1972 he

started studying computer science in the Technion, Israel Institute of Technology,

Haifa. In 1977, he graduated cum laude with a B.Sc. in computer science.

After graduation, he joined Mini Systems Inc. where, under Amir Pnueli and

Hagi Lachover, he worked on the design and implementation of an operating

system for Scitex-a pioneer in the field of computerized color pre-press. This

system became the backbone of Scitex's products and is being used to this day.

While at Mini Systems, he and Nava Hefetz married and moved to Haifa,

where Nava was completing her graduate studies at the Technion for a D.Sc. On

February 3, 1981 their daughter Tamar was born in Haifa.

A desire to further his knowledge brought Jacob and his family to CorneU

University, where he joined the Computer Science Department as a graduate

student. On September 8, 1987, Elad was born. On Elad's second birthday, Jacob

handed the final draft of his dissertation to his committee; on September 18, 1989

.in1



he successfully defended the dissertation.

Jacob was invited by Efraim Arazi, the founder and former president of Scitex,

to join Elecronics for Imaging Inc. (EFI)-a new start-up company founded by

Mr. Arazi. He accepted the invitation and currently is Director of Research and

Development.

iv



In memory of my dear mother Tamar Aizikowitz, n~e Mordel.



Acknowledgements

I am thankful to my advisor, Fred B. Schneider, for defining goals far beyond my

imagination and for helping me explore the unknown. From Fred I have learned

the difference between an idea and a result, between a collection of results and a

chapter, and between a collection of chapters and a harmonious dissertation. HO

taught me that technical problems often appear disguised as language problems

and that improving the presentation often results in clarification and refinment of

technical ideas. If while reading this dissertation one ever stumbles on a sentence,

or feels that ideas do not flow smoothly, it is due to my own impatience.

I would like also to thank the other members of my committee, ViLLala R. Rao

and Sam Toueg who, despite short notice, carefully read the manuscript and

provided detailed and significant comments. Discussions that I had with Sam on

this work and related research were educational and enlighting.

Before starting my studies at Cornell, I was fortunate to work with many

talented people at Mini Systems Inc. I am most thankful to Amir Pnueli, who

guided me at Mini and helped me understand operating systems. Amir encour-

aged me to pursue higher education and was always there to give advice. His

explanation of the meaning of the formula 3v : U, where U is a temporal logic

formula, helped me to understand issues related to this dissertation.



My fellow graduate students Amitabh Shah, Pat Stephenson, and Micah Beck

taught me many things. They always had time to discuss my work and to help

me choose the right tools for programming and writing. Amitabh read an early

draft of this work and his suggestions and comments were very helpful. For his

hospitality during my last month in Ithaca, I am also deeply thankful. The help

of David Loshin, who did not let me stop working on a problem that motivated

this dissertation, is appreciated.

Ken Birman supported me during the initial stages of my research, providing

me time to find my direction. I appreciate the confidence he has shown in me. I

am also grateful to Efraim Arazi who let me have the time I needed to complete

this research.

This work would not have been possible without the support of friends and

family. My friends, Paz and Avi Kribus, always listened, gave advice, and showed

a positive point of view. The devoted help of my in-laws, Yona and Dov Hefetz,

was indispensable. My sister Rina Alcalay and her family relieved me from duties

back home, allowing me freedom to pursue my goals.

I would like to thank my dear father, Aba Aizikowitz, for the support, advice,

and encouragement that he has always given me. My children always reminded

me that de is more to life than research. Finally, I deeply appreciate the help,

en u 9t, and advice from my wife Nava. Without her understanding and

patience this work would have been impossible.

Support for this work was provided in part by the office of Naval Research under contract N000 14-
86-K0092, the National Science Foundation under Grant No. CCR-8701103, Digital Equipment
Corporation, and Scitex America Corporation. Any opinions, conclusions or recommendations

presented in this work are mine and do not reflect the views of these organizations.

vii



Table of Contents

1 Introduction 1
1.1 Implementing Services .............................. 3
1.2 Implementations from Refinement Mappings ............... 6

1.2.1 Hiding Details ..... ......................... 9
1.3 Organization of Thesis ............................... 10

2 Specifications and Implementations 11
2.1 Specifications ....... .............................. 11

2.1.1 States ....... .............................. 12
2.1.2 Actions ....... ............................. 13
2.1.3 Behaviors ....... ............................ 14

2.2 A Simple Specification ............................... 16
2.3 Programs are Specifications Too ..... ................... 17

2.3.1 Associating Control Variables with Statements ....... .. 19
2.4 External and Internal Variables ......................... 19

2.4.1 Externally-visible Parts of Behaviors ................. 21
2.5 Implementations ................................. .22

2.5.1 Implementation in terms of the Behavior Axioms ...... .25

3 Proof Outlines as a Specification Language 28
3.1 Program Proof Outlines ...... ........................ 29

3.1.1 Actions of a Proof Outline ..... .................. 30
3.1.2 Behaviors of a Proof Outline ..................... 31

3.2 Defining 'Implements' for Proof Outlines .................. 34
3.3 Structural Refinements ...... ........................ 36
3.4 Alternative Mapping for Control Variables ................ 47
3.5 A Remark on Structural Refinement .................... 47

4 Designing Distributed Implementations of Services 49
4.1 A Mutual Exclusion Service ........................... 49

4.1.1 A Single-Server Implementation ................... 50
4.1.2 Deriving Multiple-Server Implementations ............. 51

4.2 A Methodology for Designing Distributed Services ........... 61

viii



4.2.1 Performance .......................... 65
4.3 A Distributed Set. .. .. ... ... ... ... ... ... ... .. 66

4.3.1 A Single-Server Implementation .. .. .. .. ... ... .. 66
4.3.2 A Multiple-Server Implementation .. .. .. .. .. ... .. 66

5 Conclusion 72
5.1 Relation to Other Work .. .. .. .. ... ... ... ... ... .. 74
5.2 Future Work. .. .. .. ... ... ... ... ... ... .... .. 77

5.2.1 Experience. .. .. .. ... ... ... ... ... ... .... 78
5.2.2 Liveness. .. .. .. .. ... ... ... ... ... ... ... 78
5.2.3 Failures. .. .. .. ... ... ... ... ... ... ... .. 79

Bibliography 80

ix



List of Figures

1.1 A client/service program ............................ 2
1.2 A single-server implementation ......................... 3
1.3 A multiple-server implementation ..... .................. 4
1.4 Client cp with an in-line expansion of an implementation of the

guard service ....... .............................. 7
1.5 A refinement of Figure 1.4 ..... ...................... 8

2.1 A specification H ....... ........................... 17
2.2 A specification in a generic assembly language .............. 18
2.3 Incrementing x by 2 ................................. 25

4.1 A single-server implementation of mutual exclusion ...........
4.2 Translated assertions .............................. 5:
4.3 A first step in refining enterp ......................... 5
4.4 A second step in refining enterp ..... ................... 56
4.5 A third step in refining enterp ..... .................... 56
4.6 A cobegin refinement of enterp ..... ................... 57
4.7 Refining exitp ..... ............................. 58
4.8 A distributed mutual exclusion ......................... 59
4.9 A background update of server's state (gossip) .............. 60
4.10 A multiple-server implementation of the mutual exclusion service. 60
4.11 A multiple-server implementation of insert ................ 68
4.12 A multiple-server implementation of member for y = x E S . 69
4.13 A multiple-server implementation of member for y =x x E S . 70

x



Chapter 1

Introduction

Programs for distributed systems are often structured in terms of clients and

services. A service supports some data abstraction, which consists of data objects

and operations to manipulate them. Clients of the service are processes that use

this abstraction. A service-interface defines the data abstraction, and a service-

implementation is a realization of the abstraction. For example, the program in

Figure 1.1 consists of two services, tickets and guard, and clients clI,..., c. The

tickets service provides the abstraction of a ticket dispenser, supporting a single

operation getTicket. The guard service provides the abstraction of an access

guard, supporting the operations enter and exit. By invoking getTicket, a client

acquires a unique ticket; by invoking enter with this ticket, exclusive access to

the critical section is ensured.

Partitioning a service into a service-interface and a service-implementation

allows clients to ignore implementation details of the service and allows the

service-implementation to ignore implementation details of the clients. How-

ever, knowledge of how clients use a service often can be exploited in designing

a service-implementation that is tailored to an application. For example, for the

system of Figure 1.1, the fact that exit is invoked only by a client having access

to the critical section simplifies the service-implementation-there is no need to

., i a1



2

service tickets
interface:

type: ticket;
operation:

getTicket(var t : ticket);

implementation ...
end of service tickets

service guard
interface:

operation:
enter(t : ticket) returns boolean,
exitO;

implementation ...
end of service guard

cobegin [III<,<.

cp: var tktp of ticket;
do true -

NCSp
get,: getTicket(tktp);

entLrp: do -lenter(tkt,) -- skip od;
Cs,

exitp: exit();

od
coend

Figure 1.1: A client/service program.



3

e - client stub

client service

server

virtual
communication
channel

Figure 1.2: A single-server implementation.

test for spurious invocations, and concurrent invocations of exit never happen.

1.1 Implementing Services

A service is typically implemented by servers, which are processes that might re-

side anywhere in the distributed system, and by client stubs, which are programs

that reside on computers executing clients. A server maintains state information

pertaining to the implementation of the service. It receives requests to update

or read that state and responds by sending replies. A client stub translates in-

vocations of service operations into requests to one or more servers, sends these

requests to the servers, receives the replies, and uses these replies to compute

result value, which is returned to the client. For example, a server for the tickets

service 4 figure 1.1 might maintain a variable g to store the value of the most

recenikAlqensed ticket and might support requests to increment g and to read

its vusae. A client stub would issue such requests in implementing getTicket.

A service implementation that is based on a single server is structured as in

Figure 1.2. Such an implementation is usually quite simple. However, it can have

drawbacks. First, the service can only be as reliable as the computer that hosts



4

e-client stub

client

1:1 
service

server

virtual....
communication
channel

Figure 1.3: A multiple-server implementation.

the (single) server. 1 Failure of the server's computer halts the service. Second,

having only a single server might lead to poor performance. For example, the

computer executing the (single) server might not be able to handle requests in a

timely manner, or, due to distance, some clients might only have a narrow band-

width communication channel to the server's computer. Finally, organizational

constraints might dictate that data maintained by the service reside at different

sites, say for reasons of privacy or security. This would prevent any single site

from hosting the server.

The problems associated with a single-server implementation can be circum-

vented by employing several servers to implement a service (see Figure 1.3).

With multiple servers, failure of a computer that hosts a server can be masked.

Performance problems can be avoided by using multiple servers and designing

client stubs to forward requests to a server that is nearby; servers must update

each other periodically [LL86]. Finally, organizational constraints can be ad-

dressed with multiple servers by assigning different servers to different parts of

the organization.

Unfortunately, designing multiple-server implementations can be difficult.

When several servers are used to implement a service, server activities might

1We assume clients do not fail.



5

have to be coordinated. For example, in a multiple-server implementation of

the guard service of Figure 1.1, servers must be coordinated so that they do not

concurrently grant different clients access to the critical section.

The state machine approach [Lam78,Sch86] is one of the more general meth-

ods for designing multiple-server implementations. Given a single-server imple-

mentation of a service, this approach permits derivation of a multiple-server

implementation that, as far as clients can tell, behaves exactly like the single-

server one. This is done by starting all the servers in the same initial state, using

protocols to guarantee that every non-faulty server (i.e., server that runs on a

non-faulty machine) behaves like the single server of the corresponding single-

server implementation, and by requiring that client-stubs generate a result value

using a reply from a non-faulty server.

The state machine approach exploits an assumption that the behavior of each

server is completely determined by its initial state and the sequence of requests

it processes. It is based on the following rules for processing requests:

Input agreement: All non-faulty servers receive every request.

Input order: All non-faulty servers process requests in the same order.

Output select: A client-stub generates a result value using a reply from a non-

faulty server.

Input agreement, Input order, the requirement that all servers start with the

same Al state, and the assumption that a server's behavior is deterministic,

together guarantee that the states of all servers are identical after processing

the ith request. Moreover, these server states will all be equal to the state of

the single server of the corresponding single-server implementation. This is the

reason that Output select permits a result value to be generated from the reply

of any non-faulty server-any such reply is necessarily identical to the reply the

corresponding single-server would have sent.



6

The state machine approach allows a multiple-server implementation to be

derived mechanically from a single-server one. However, this multiple-server

implementation may exhibit poor performance. This is because to guarantee

that the sequences of requests processed by each server are identical, requests

are tagged with unique identifiers from some total order (such as unique time-

stamps), and servers process requests in that total order. If a request arrives at

a server out of order, then the server must delay processing that request until it

receives and processes all preceding requests. Thus, the state machine approach

may cause requests that could be processed to be delayed.

A more fundamental problem with the state machine approach is that trade-

offs between Input agreement, Input order, and Output select are not supported,

although they are sometimes possible. Schemes where for each service operation;

a stub requests that only a majority of the servers do the operation violate Input

agreement, yet they are sometimes sufficient. For example, in an update opera-

tion, only a majority of servers need be changed provided that in read operations,

replies from majority of servers are collected and one with the most recent in-

formation (according to some version identification scheme) is selected [Gif79,

Tho79l. Thus, a weaker (and cheaper) Input agreement rule might be sufficient

provided a stronger (and more expensive) Output select rule is used. Similarly,

tradeoffs between Input order and Output select are sometime possible. Finally,

if operation commute, then processing them in different orders will not generate

different states; for such services Input order is too strong a requirement.

1.2 Implementations from Refinement
Mappings

This thesis describes a methodology for designing multiple-server implementa-

tions given single-server implementations. The methodology is general enough

to support trade-offs like the ones between Input agreement, Input order, and



7

c.: do true -.

NCSp
getp: getTicket(tktp);

enter.: do tktp 0 nxt - skip od;CsP
ezitp: nxt := nxt + 1;

od

Figure 1.4: Client c with an in-line expansion of an implementation of the guard
service.

Output select described above, but retains the simplicity of the state machine ap-

proach. In addition, the methodology supports design of service-implementations

particularly well-suited for specific applications.

The key to our methodology is viewing a single-server implementation as a

specification of a service, and regarding a multiple-server implementation to be

correct if and only if it implements that specification. The methodology is based

on defining a mapping that allows states of a multiple-server implementation

to be regarded as states of a single-server one, and on showing that under this

mapping the multiple-server implementation can be viewed as the single-server

implementation. Having states of different servers be identical after processing

the ith request, as required by the state machine approach, is only one mapping

between states of a multiple-server implementation and states of a single-server

one. Other mappings, when possible, lead to other implementations.

To illustrate the methodology, suppose a multiple-server implementation of

the guard service of Figure 1.1 is desired, and we are given the single-server imple-

mentation described by enterp and exitp of Figure 1.4. In that implementation,

a variable nxt indicates the value of the ticket held by the process granted access

to the critical section. The server provides an operation read and an operation

increment to access and modify nxt. Thus, in response to an invocation of enter,

the stub requests read from the server, waits for the reply, compares the reply



8

c,: do true
NCS,

get,: getTicket(tktp);
enterp: do tktp 0 nxtp -- skip od;

Cs,
exitp: (cobegin lll<j<k

nxtj := nxtj + 1;
coend)

od

Figure 1.5: A refinement of Figure 1.4.

value with the ticket value supplied by the client, and returns the comparison

result to the client. In response to exit, the client stub requests increment.

Given this single-server implementation, we can obtain a multiple-server im.

plementation as follows. Suppose n servers are desired, where the Jth server

maintains variable nxti. Define a mapping that gives a value to nxt in terms of

nxtl, . .. , nxtn: nt fturnxtj if true
nxt = ... ... (1.1)

n xt. if true

Observe that mapping (1.1) is well-defined only if

nxt = nxt2 = ... =nxtn (1.2)

holds on any state. So, (1.1) is a function only if (1.2) holds. Consequently,

provided (1.2) holds, (1.1) allows us to regard the state of a multiple-server

implementation as being a state of the single-server one.

It is straightforward to ensure that (1.2) holds initially. In order to ensure

that (1.2) continues to hold, we must guarantee that whenever the state of one

server is changed, then so are the states of all others. An implementation where

this is done appears in Figure 1.5. Note that the only changes to Figure 1.4

are in enter, and exit., which now access variables nxtl,...,nxtn instead of



9

nxt. In enterp the stub requests that the local server (which maintains nxtp)

perform a read, and in exitp the stub atomically requests that all servers perform

an increment-an action necessary to maintain (1.2). From the point of view

of performance, mapping (1.1) provides an inexpensive read operation, but, to

maintain (1.2) expensive updates are necessary.

Note that the multiple-server implementation presented in Figure 1.5, is, in

fact, a state-machine style solution. However, we derived this implementation

not by the rules of the state machine approach, but from a mapping. Another

mapping, might have led to a different implementation.

1.2.1 Hiding Details

In the examples above, we have abstracted details concerning communicatiorn

between stub and server. For example, the action nxt := nxt + 1 abstracts an

interleaving of stub actions

sendToServer( "increment");

receive FromServero;

and server actions

receive From Stub( command);

if command = "increment" --+ nxt := nxt + 1;

0 command= "read" --+ sendToStub(nxt);

fi

Also, the construct (...) in action exitp of Figure 1.5 implies that all update

requests that originate from a single exit invocation of client p, are performed in

the same order by every server. To use another term from the literature, action

exit, specifies an atomic broadcast of the requests to update the nxti's.

Using assignment statements to model interleaving of requests, replies, and

server internal operations, and using a cobegin statement to model multicasting,



10

is just a consequence of the level of abstraction we chose for our programs. Our

methodology is not limited to this level of abstraction; a designer should choose

abstractions that are proper for the problem at hand. The difficulty of designing

multiple-server implementations of a service, however, is mainly in designing a

single-server implementation and in choosing a good mapping. Details of the

communication are usually secondary. Choosing the right level of abstraction-

one that reveals enough details so that the solution is not trivial, and hides just

enough so that the solution is elegant-remains an art.

1.3 Organization of Thesis

Chapter 2 defines specifications and the notion of implementing a specification.

Chapter 3 shows how proof outlines can be viewed as specifications and gives

a theoretical foundation for a methodology of deriving multiple-server imple-

mentations from single-server implementations. In Chapter 4 we describe the

methodology and illustrate it by examples. We conclude in Chapter 5 by relat-

ing our approach to the existing research. We also outline directions for applying

and extending this work.



Chapter 2

Specifications and

Implementations

In chapter 1, we suggested that a multiple-server implementation of a service can

be viewed as an implementation of a specification given by some other-perhaps

single-server-implementation. In this chapter, precise definitions of specification

and implementation are given. The material is based on [Lam83,Lam89l.

2.1 Specifications

A specification characterizes expected behavior of a system. To specify a sys-

tem that comprises a single process, input/output relations, which relate values

of variabks at termination to their initial values, often suffice. For a system of

concurrent processes, other properties, involving intermediate states of the com-

putation, can be of interest. In fact, the program state at termination might be

wholly irrelevant for a concurrent program, because many such programs are not

intended to terminate. Thus, a specification of a concurrent system must define

a set of sequences of states rather than simply a set of pairs of states.

Many different languages exist for expressing specifications. There are spe-

cially designed specification languages such as Larch [GHW85] and Z [Spi89],

11



12

terse mathematical notations, such as Temporal Logic [MP81], and graphical no-

tations such as state-transition diagrams [HPSS87]. Programming languages can

also serve as specification languages, since a program defines a set of sequences of

states-those sequences that correspond to executions of the program. Indepen-

dent of the language in use, the meaning of a specification of a concurrent system

S can be described in terms of a triple (Es, As, Bs), where Es is a set of states,

As is a set of actions, and Bs is a set of sequences of states called behaviors.

2.1.1 States

States are functions that map variable names to values. We use s(v) to denote

the value of a variable v in a state s. The domain of every state in ES is the set

N(S); the range of every state is the union of the types of the variables in N(S).

For any variable v E N(S), if v is of type Tv then s(v) E T, holds for any state s

because, a state always maps a variable name to a value in that variable's type.

For convenience, we define s(E) for an expression E, to be the value of E after

every free variable v in E has been replaced by s(v).

Control variables are used in order to specify aspects of the state that restrict

possible transitions of control. We associate with every action a unique pair

of distinct control points: an entry control point, and an ezit control point.

Before an action can be executed, its entry control point must be active; when

it terminates, its exit control point becomes active. We assume that for every

action a E As, N(S) includes two Boolean control variables. The first, at(a), is

assigned the value true by any state for which the entry control-point of action

a is active, and false by any other state; the second control variable, after(a), is

assigned true by any state for which the exit control-point is active, and false by

any other state.

Not all functions with domain N(S) represent meaningful assignments of val-

ues to variables. For example, it is reasonable to assume that the entry and exit



13

control points of an action a are never simultaneously active. Thus, a function

that assigned true to both at(a) and after(a) would not be meaningful as a state.

To exclude from Es such meaningless functions, we specify constraints-Boolean

expressions over N(S). Only functions that satisfy these constraints are included

in Es. Thus, if z, y, z are in N(S) and z < y + z is a constraint, then, for every

s E ES, the expression s(x) < s(y) + s(z) must evaluate to true.

For convenience, we distinguish constraints of the form x = E, where z is

a variable and E is an expression involving variables. We call such constraints

definitions because they define the value that a state will assign to x in terms

of the values assigned by that state to the variables in E. Variables that appear

only on the right-hand side of definitions are considered primitive. Variables that

appear on the left-hand side of a definition are considered derived, as their value

is a function of the value assignment to the primitives. One case where derived

control variables are handy is in arguing about execution of non-atomic actions.

This is illustrated in Section 2.3.

2.1.2 Actions

An action is the basic unit of execution and changes the state indivisibly. Possible

state changes of an action a E As define a relation 1Z5 C ES x Es such that

(s, t) E Z.S holds iff

e it is possible to execute a in state s, and

9 executing a on a may result in state t.

An action a E As can be specified by a predicate PS that characterizes Rs.

The free variables in PS are from N(S) and a primed copy of N(S), denoted

N'(S). A pair of states (s, 3') satisfies PS, denoted (s, s') Ps, iff the Boolean

expression that results from replacing the free variables from N(S) by their values

in s and replacing the free variables from N'(S) by their values in s', evaluates



14

to true. Thus, a primed variable in P.s refers to the value of that variable after

the execution of a. The relation IZs is defined as

IZ.s = {(s,s') E Es x s I ((s,s') H P s ) A

((z E N(S) A z V free(PS)) =:, s(x) = s'(z))}.

where free(P) is the set of variables appearing free in the predicate P. If x and x'

are free in Ps and there exists a pair (a, s') E 7IZs for which s(z) # s'(x') then we

say that a modifies x. For example, an action a E As that increments a variable

x by 2 is specified by the predicate

Pa: at(a) A -after(a) A -'at(a)' A after(a)' A x' = x + 2.

The action a, as specified, modifies at(a), after(a), and z.

An action a is self-disabling if for every (a, t) E -gs, there is no u E Es such

that (t, u) E 1Zas . Thus, after a completes execution, another action must be

executed before a can execute again. Henceforth, we restrict consideration to

self-disabling actions.

2.1.3 Behaviors

A behavior (of a specification S) is an infinite sequence a E E O, where for every

i, a[i] is a state, 1 and either a[i] = r[i + 1] or there exists an a E As such

that (a[i],a[i + 1)) E Rs. A property is a set of behaviors. We assume that the

property defined by a specification S, denoted Bs, satisfies two restrictions. The

first restriction is that Bs be closed under stuttering. The term stuttering refers

to finite repetition of a state in a behavior. Let (a) denote the state sequence

that is obtained by replacing every subsequence of identical states by a single

instance of the stuttered state. In other words, (r) is stutter-free. Requiring Ss

to be closed under stuttering means that if a E Bs holds, then for all a' such that

11f a = so ... , then a[i] = s,, a'[i..] = ... and a[i..j] = s *s +t...8j.



15

4(a) = b(o') holds, a' E Bs holds as well. This requirement reflects the fact that

an environment cannot distinguish between two successive identical states, and

thus two behaviors that differ only by stuttering should be considered equivalent.

In addition, as we shall see, having Bs dosed under stuttering allows for a nice

correspondence between a high-level action and low-level actions that implement

it.

The second restriction on Bs is that it be tail closed. A set of sequences T

is tail-closed if for every a E T, o,[l..] E T holds. Requiring Bs to be tail-closed

guarantees that if a is an element of Bs then so is o[i..] for every i. Tail-closure

is consistent with the way machines execute programs: execution of a machine is

based entirely on the machine's current state. Thus, if oa[O..] is a behavior, then

it is evidence that, for every i, if the specified program were started executing

from state a[i], it would continue through all the states in o[i + 1..], making a[i..]

a behavior as well. Technically, tail-closure is helpful if one wants to consider

behaviors as models for temporal logics that have a 0-Generalization rule [MP81].

We describe Bs by conjunction Az$ of behavior axioms. An infinite sequence

of states a is in Bs if and only if it satisfies all of these axioms. Formally,

Bs = {oEE I o= Azs}.

Behavior axioms will be formulas of Temporal Logic, where the free variables are

from N(S). 2 Thus, Bs is the set of all models (from E') of Axs.

The iequirements that Bs be dosed under stuttering and that it be tail closed

impose retrictions on the behavior axioms. We consider only those A:S such

that for every o, where o, H Axs holds, both 4a H Axs and all..] H Ars hold

as well. Also, we require that Axs be consistent with the specification of the

individual actions. That is, if a H Ar5 , then, for every i, if a[i + 1] # a[i] then

there exists an action a E As, such that (o[i + 1],o[i]) H Ps.
2We are assuming that the expressiveness of Temporal Logic [MP81] suffices for the behavior

axiorw.



16

In Section 2.1.1 we associated constraints with the set of states. However,

being Boolean expressions over N(S), constraints are Temporal Logic formulas

and can be considered part of the behavior axioms. This leads to technically

simpler specifications, and this is the approach we take.

2.2 A Simple Specification

As an example, we present a specification (E2H, AH,BH) of a system H that

increments an integer variable x by 2. The system consists of a single action

a. Thus, AH = {a}. From AH, we conclude that at(a) and after(a) must be

elements of the domain of states. Thus, N(H) = {z, at(c), after(a)}, and EH is

the set of functions that map x to an integer value and at(a), after(a) to Boolean

values. Behavior axioms of H are:

0 at(a) =: at(a)Uafter(a)

(If the entry control point of a is active, then it stays active unless the exit

control point becomes active).

* -(at(a) A after(a))

(A constraint: the entry and exit control points of the action a are not

active simultaneously).

* at(a) V after(a)

(A constraint: either the entry control point of a or its exit control point

are active).

e after(a) =:- Oafter(a)

(If the exit control point of a is active then it stays active thereafter).

* (VX E Z : (at(a) A z = X) * O (after(a) = x = X + 2))

(If the entry control point of a is active and x has an integer value X, then



17

state space: N(H) = {x, at(a), after(a)}

actions: .AH = {al

behaviors: Specified by behavior axioms:

at(a) = at(a)Uafter(a)
-'(at(a) A after(a))
at(a) V after(a)
after(a) =o- Oafter(a)
(VX E Z (at(a) A x = X) # O(after(a) *x = X + 2))
(VX E Z (after(a) A X = X) =- Ox = X)

Figure 2.1: A specification H.

henceforth if the exit control point becomes active then the variable x will

have the value X + 2).

• (VX E Z: (after(a) A x = X) # Ox = X)

(If the exit control point of h is active and the variable x has any integer

value X, then x will have the value X thereafter).

Figure 2.1 summerizes this specification. Note that AZH satisfy the requirements

that actions be self-disabling and that behaviors be both tail-closed and closed

under stuttering.

2.3 Programs are Specifications Too

Programs can be regarded as defining specifications. As a specification, the

meaning of a program P is (Ep, Ap, Bp), defined as follows. The set of variables

N(P) conssts of explicit as well as implicit variables of the program. Implicit

variables are needed because when a programming language is used to specify

actions, some aspects of the state become implicit. For example, the assignment

statement a: x := x + 2 increments a variable x by 2, assigns false to the control

variable at(a), and true to after(a). In a, only the variable x is explicit-both

at(a) and after(a) are implicit variables of the action.



18

L: lda x /* load accumulator with x */
ina /* increment accumulator */
ina
sta x /* store accumulator in x */
hlt /* halt */

x: ds /* define storage */

Figure 2.2: A specification in a generic assembly language.

The set of actions Ap consists of all atomic actions in P.

Finally, the behavior axioms Azp are encoded in the text of P and the se-

mantics of the programming language.

As a simple example of how to regard a program as a specification, consider

the following program H, given in a Pascal-like programming language.

H: program

var x: integer;

a: x:=x+2

end

As a specification, program H is identical to the specification H of Figure 2.1.

Note, though, that at(a) and after(a) are explicit in Figure 2.1 and implicit in

program H.

Program L of Figure 2.2, can also be regarded as specification. It is written in

a generic assembler language and, naturally, specifies details that do not appear

in a program of a high-level programming language. Program L has as its

variables z, an accumulator, and control variables for each machine instruction.

Every machine instruction defines an action. The axioms encode the effect of

each. It should be obvious that programs L and H, and specification H, all

specify similar behaviors. In Section 2.5, we formalize such relationships.



19

2.3.1 Associating Control Variables with Statements

When using programs to write specifications, one often needs to specify transfer

of control between non-atomic as well as atomic statements. For that purpose,

we associate with every statement T the control variables at(T), in(T), and

after(T). If T is not atomic, then the assignment of values to T's control variables

should be consistent with the assignment of values to the control variables of

the components of T. Thus, there are constraints on these control variables.

Moreover, these constraints are of a special form-they define the value that a

state assigns to control variables of T in terms of the values that the state assigns

to the control variables of T's components. For this reason, the control variables

of T are derived variables. 3 For example, a statement T: a; b comprising of two

atomic actions a and b, induces the following definitions for its derived control

variables4 :

at(T) = at(a)

in(T) = at(a) V at(b)

after(T) = after(b)

2.4 External and Internal Variables

In specifying a system, one must distinguish between external elements (i.e.,

names and actions), which are visible to the environment, and internal ones,

which awe invisible to the environment. For example, in the specification of

the tickets and guard services of Figure 1.1, actions getTicket(, enter), and

exit() are external; any name declared inside the implementation part of those

services is internal. Ideally, one would like to specify a system in terms of what is

observable by the environment-the externals. However, such specifications tend

to be cuuibersome, and thus internal elements are used as well. For example,

3For technical reasons, if T is the entire program then after(T) is considered primitive.
4Assume T is not the entire program.



20

consider the specification of a set with operations to add and remove elements,

and an operation to test for membership. It is possible to specify the effect of a

test for membership operation in terms of the sequence of the preceding add and

remove operations. However, it is much easier to maintain the contents of the set

in some variable, having add and remove update this variable, and test search

it. Such a variable though, is not (directly) visible to the environment, which

can access it only by invoking the externally visible operations add, remove, and

test. Thus, the variable is internal.

We use (V).S to denote a specification S in which 0 is a list of the internal

names. The behaviors of a specification (U).S are described by (3V : Azs). The

meaning of a (3x : U), where a is an infinite sequence of states and U a

Temporal Logic formula having the property of stutter equivalence (as all our

behavior axioms do), is given by

a = (3x: U) iff there exists sequences of states a' and a" such that

e * r - ha" (a is a stuttering equivalent of a),

o or" is an x-variant of a, i.e., differs from ar' by at most the value

assignments to x, and

*e711 frU.

Classifying the elements of a specification S into externals and internals par-

titions the set N(S) of names (of variables) into the disjoint subsets NE(S)-the

external names-and N 1(S)-the internal names. It also partitions the set As of

actions into the disjoint subsets AE-the external actions-and Al -the internal

actions. These partitions are constrained, though. Control variables associated

with control points of external actions are external, and control variables associ-

ated with control points of internal actions are internal. Formally, we define:

(2.1) Consistent ext/int specification: The partitioning of N(S) and As into



21

NE(S), NI(S), and AE , AI is consistent iff, for every a E .As:

a E a {at(a), after(a)} NE(S).

As a simple example, consider specification H given in Section 2.2. A classifi-

cation into externals and internals might be, for the variables NE(H) = {x} and

NI(H) = {at(a), after(a)}, and for the actions AE = ' and Aj {a}. This

would be stated as the specification (at(ct), after(a)).H. Classifying x as external

and a as internal implies that the environment can observe the changes in x, but

it cannot observe the transfer of control resulting from the action that changes

x. This classification means that the environment cannot distinguish behaviors

of specification H from behaviors specified by program L of Section 2.3-both

have the same effect on variable z. Had we classified a as an external action

in specification H, behaviors specified by L could be distinguished from those

specified by H.

2.4.1 Externally-visible Parts of Behaviors

The distinction between external and internal elements of a specification intro-

duces a distinction between a state and an ezternally-visible state. An externally-

visible state is a state with domain restricted to NE(S) instead of N(S). Thus,

an externally-visible state provides a value assignment for the external variables

only. The externally-visible part of state a E Es is denoted by s JNE(S). An

externaly-visible part of a behavior or is the sequence of externally-visible states

that results from reducing every state in a to its externally-visible part. We use

o INe(S) to denote the externally-visible part of the behavior a. Note that an

externally-visible part of a behavior is not necessarily a behavior. A behavior

might have successive states s, t such that, for some internal action b, (s, t) E Rb

and, for some external name x, s(x) 6 t(x). When reduced to their externally-

visible parts, the externally-visible states will still differ (at least on z) but, since



22

at(b) and after(b) are not in the domain of the externally-visible states, their

control part will not reflect the execution of any action.

2.5 Implementations

We can now turn to the question of what it means for one specification to im-

plement another. Consider two specifications (Ui).L (for "low-level") and (j).H

(for "high-level"). Specification (W).L implements (V).H iff the externally-visible

part of every behavior of (W).L is an externally-visible part of some behavior of

(U).H. Formally, we require that for every o! E 5L there exists a o' E SH such

that

(O0iNE(L)) = 4(o"NEG(H)).

Thus, (W).L implements (v).H if the externally-visible parts of a and o,' are equal

but for stuttering. Note that because this definition of implements is in terms of

a reduction to externally-visible parts, NE(H) = NE(L) is a necessary condition

for L to be considered an implementation of H.

One method for proving that (W).L implements (U).H is to define a function

FLH : EL -*E+H,

and show that for every behavior a E BL, the sequence

FLH(o[O)DFLH(ol)...

is a beavior in BH. If for every a E EL, the value assignment to the external

variables provided by FLH(S) is identical to the one provided by s, (i.e., for every

x E NE(H), s(z) = FLH(s)(z)), then one can establish the existence of the

behavior o,' in the definition of implements simply by defining a' to be FLH(a),

where

FLH(a)d=' FLH(00[])FLH(0 [1]) ....

The function FLH is called a refinement mapping.



23

Unfortunately, Abadi and Lamport have proved that for arbitrary specifica-

tions L and H, where L implements H, such a refinement mapping is not guar-

anteed to exist [AL88]. However, they also proved that if L and H satisfy certain

restrictions, then it is possible to augment L with additional internal variables

. (called auxiliary variables) such that the resulting specification L2 describes a

property that is isomorphic to the one described by L, and a refinement mapping

from ELM to EH does exist. We call L2 an auxiliary variables augmentation of L.

Thus, assuming that specifications satisfy the restrictions given in [AL88], 5 we

have the following definition:

(2.2) Implements: A specification (W).L implements a specification (u).H if

and only if

1. NE(H) = NE(L).

2. There exist L', an auxiliary variables augmentation of L, and refine-

ment mapping FLH : ELN --+ EH such that:

(a) for every a E EL- and for every x E NE(H), a(x) = FLH(s)(x),

(b) (Va, (s,t) : a E A A (s,t) E RL' : (FLH(s),FLH(t)) E lzH),

(c) for every a E BL-, FLH(a) E BH.

Note that if our specification language has the property that for an external

action a of a specification 5, all the free variables in P.S-the predicate that

specifies 1--are external, then requirement 2b of Implements (2.2) follows from

requirements 1 and 2a.

Assuming that our formal language is rich enough, a natural way to define a

refinement mapping FLH is by defining an expression over N(L) for every variable

name in N(H). 6 Let MLH be a function that maps every variable name in N(H)

to an expression over the variable names in N(L). Such a function can be used

GThe type of specifications of concern in this thesis satisfy these restrictions.
SFor simplicity, in the following discussion we ignore the fact that FLH may have to be defined

in terms of an auxiliary variables augmentation of L.



24

to augment every state s E EL, adding the additional variable names of N(H) to

the domain of s. Given mLH, refinement mapping FLH is any function from VL

to EH such that for every s E EL and for every x E N(H),

FLH(s)(x) = s(mLH(x)). (2.3)

In order for mLH to describe a refinement mapping, it must both be a function

and an identity function for external variable names. That is, for every s E EL,

v E N(H), and X E NE(H),

s(mLH(V)) is uniquely defined, and (2.4)

MLH(X) = X. (2.5)

A function, like mLH, from N(H) to expressions over N(L) that defines a refine-

ment mapping, is also called a refinement mapping.

We can construct mLH by first defining an expression over N(L) for every

primitive variable in N(H), such that (2.4) and (2.5) are satisfied. Then, we

define expressions over N(L) for every derived variable in N(H). Recall, a vari-

able d E N(H) is derived because it appears on the left-hand side of a definition,

say d = Ed, where Ed is an expression over N(H). For every derived variable

d E N(H), we define mLH(d) to be mLH(Ed), where mLH is extended to expres-

sions in the usual way (e.g., mLH(a A b)d-fmLH(a) A mLH(b)). Since every derived

variable is ultimately defined in terms of the primitive ones, this completes the

definitiom of the mapping mLH.

To llustrate use of a refinement mapping and Implements (2.2), consider the

specification given by program L of Figure 2.3 and program H of Section 2.3.

Assuming that NE(L) - NE(H) = {a}, one would expect L to implement

H. Since the variable y is internal, the externally-visible part of a behavior of

L shows only changes in x, and both H and L make the same changes-they

increment z by 2. We will not give a full proof that L implements H, but will



25

L: program

var x, y: integer;
10: y :=X;

11: y:=y+ 2 ;

12: X :=y
end

Figure 2.3: Incrementing z by 2 ...

present mLH-a refinement mapping that can be used in such a proof.

mLH(at(a)) def at(lo) V at(lI) V at(12)

mLH(after(a)) 4= after(12)
def

mLH(x) = x

Note that if the action a were external, then by Consistent ext/int specifica-

tion (2.1), at(a) and after(a) would have been externals too, and this mLH

would not work because it violates 2a of Implements (2.2). In fact, if a were

external, then the only possible implementation of H is H itself.

2.5.1 Implementation in terms of the Behavior Axioms

Defining candidate refinement mappings and checking them by testing each be-

havior is often infeasible. Since behaviors are characterized by behavior axioms,

testing whether a candidate refinement mapping shows that a specification L

implements a specification H, can be done using the behavior axioms of L and

H rather than the actual behaviors in BL and BH.

Using behavior axioms, condition (2c) of Implements (2.2) is equivalent to 7

(Va' E E' : (o' H AZL) * (FLH(a) H Azx)). (2.6)

Similarly, using predicates instead of relations to define the meaning of actions,

condition (2b) of Implements (2.2) is equivalent to

(Va,(s,t) : a E A A (s,t) ,H P : (FLH(s),FLH(t)) H P'). (2.7)

7For simplicity we omit the auxiliary variables augmentation notation.



26

Assuming that our formal language is rich enough so that FLH can be defined

syntactically in terms of a function like mLH above, we can use (2.3) to argue

that equation (2.6) is equivalent to

(Vo' E E': (o, AzL) =0 (0 - mLH(AxH))) (2.8)

= (Vo, E E' :" a (AzL =0 mLH(AxH))) (2.9)

E- I= (AXL =0 mLH(AXH)). (2.10)

Similarly, using (2.3) and (2.5), equation (2.7) is equivalent to

(Va, (s, t) : a E A.,4, A (s, t) = pL: (8, t) = mLH(PH)). (2.11)

Thus, using the above equations we can restate Implements (2.2), as follows:

(2.12) m-Implements: A specification (W).L implements a specification (1).H

if and only if

1. NE(H) = NE(L),

2. There exist L, an auxiliary variables augmentation of L, and a map-

ping mLH from expressions over N(H) to expressions over N(Li) such

that:

(a) For every s E ELI, v E N(H), and z E NE(H),

i. s(mLHj(v)) is uniquely defined, and

ii. mLH(X) = x.
(b) (Va, (a,t) : a E A E , A (s, t) pL' : (s, t)mL(H)

(c) E 20  (AXLf =E rnLH(AxH)).

We should point out that under the assumption that the formal language we

use to express mLLH is rich enough, definition Implements (2.2) and definition

rn-Implements (2.12) are equivalent.



27

Using the definition of mLH, condition 2c of m-Implements (2.12) is equivalent

to

E' (AxLE #- (AxH)" V4LHW'mL.w) (2.13)L Y A L = ~ nLtt(V),MLH(V),rnLH(W ) .... ). . w...,(.3

where u, v, W,... denote the variable names in N(H). By condition 2a of m-

Implements (2.12), Equation (2.13) is equivalent to

E',n( (AXLE =* (AXH )) (2.14)

where mLH(D) denotes the list mLH(vl), mLH(V2), .... Assuming that internal

variables in specification (EY).L are named differently than the internals in (U).H,

we have, by definition of mLH, that for any vi E V, vi is not free in mLH(vj).

Thus, by predicate logic, we infer that (2.13) is equivalent to

E' (AxLf = (30: V = mLH(v) : AH)). (2.15)

By predicate logic, from Equation (2.15) we infer

E0 t Aoe * (3u: AxH)). (2.16)

In general, Equations (2.15) and (2.16) are not equivalent. Thus, in the general

case, given Equation (2.16), one has no guarantee that a function such as mLH

can be found so that (2.15) can be established. However, due to the fact that

specifications considered by this work satisfy the requirements for completeness

of [AL88], and the assumption that our formal language is rich enough to express

the refinement mapping, (2.15) and (2.16) can be considered equivalent.



Chapter 3

Proof Outlines as a Specification

Language

Proof outlines [Sch] are useful in reasoning about safety properties [Lam77]-

sets of behaviors in which certain finite prefixes (regarded as "bad" things) are

prohibited. Proof outlines can also be used in deriving programs that satisfy a

given safety property.

In this chapter, we explain how to interpret a proof outline as a specification.

We then detail conditions that imply one proof outline implements another. In

general, these conditions can be complex. However, when one proof outline is

structurally related to the other (as defined later in this chapter), these conditions

can be simplified. This structural relationship between proof outlines along with

a theorem characterizing when a proof outline that is structurally related to

another proof outline implements it are the basis of our methodology for deriving

multiple-server implementations of a service from single-server implementations

of that service. That methodology is presented in Chapter 4.

28



|

29

3.1 Program Proof Outlines

A proof outline is a program annotated with assertions before and after every

statement. Assertions are predicates in which the free variables are the explicit

and implicit variables of the program. 1 In a proof outline PO(S) for a program

S, the assertion associated with the control point at(T), where T is a statement

in S, appears just before the statement T and is denoted prepo(s)(T); the as-

sertion associated with the control point after(T) appears immediately after T

and is denoted postpo(s)(T). The term triple denotes a proof outline of the form

{P}T{Q} where P and Q are assertions and T is a statement. An example of a

proof outline appears in Figure 4.1.

A proof outline PO(S) is valid iff for every execution a of S, if a starts in a

state where assertions associated with active control points hold, then in every

state of a, assertions associated with active control points hold. When a proof

outline PO(S) that is valid is viewed as a specification, every execution of S

that starts in a state where the assertions associated with active control points

hold is a behavior of PO(S). However, in viewing PO(S) as a specification, we

would also like to argue that executions of programs other than S be regarded

as behaviors of PO(S). As we already know, this can be achieved by classifying

the variables and actions of a specification into externals and internals. Thus,

generally, a proof-outline specification is denoted (v).P0(S), where v denotes the

internal variables.

The meaning of (U).PO(S), is given by (Epo(S), Ap(S), Bp(s)). The state

space EPo(s) is the state space of program S, as characterized in Section 2.3. The

set of actions Apo(s) is determined from the statements of S in a way described

in 3.1.1 below. The set of behaviors Bpo(s) depends on the behaviors specified

by program S and the assertions of PO(S); it is defined in 3.1.2 below. The

'For simplicity, we ignore the rigid variables of a proof outline. It is straightforward to include
them.



30

definitions we give are language independent, as was the definition of Es in

Section 2.3.

3.1.1 Actions of a Proof Outline

The set Apo(s) of actions specified by proof outline PO(S) is the same as As-

the set of all atomic actions of program S. As is determined by the statements

of S and how they are composed.

The semantics of a programming language generally defines certain statement

types to be atomic. It also defines certain statement construction rules that can

be used in composing statements to obtain new ones. For example, the atomic

statements of Guarded Commands [Dij76] as extended in [Sch] are assignment

and skip, and the statement construction rules correspond to composition(;);

alternation(if ... fi), iteration(do ... od), and concurrent composition(cobegin

... coend). For a given language, let Atom(T) be a Boolean function that is true

if statement T is atomic, and let Gl,... , G. denote the statement construction

rules defined by the language, where T = Gj(T,... ,Tk) denotes the fact that

statement T is constructed of statements TI,..., Tk by rule Gi. For example, we

expect that Atom(x := z + 1) holds, Atom(x z + 1; d 5) does not hold, and

that

T:z:=z+ l; d:=5

is the composition of TI: x := z + 1 and T2: d := 5, so we have T = G;(TI, T2 ).

Some statements are guarded and may execute in a state only if that state

satisfies a guard. We use B --+ T to denote such a guarded statement, where B

is the guard. The guarded statement a: z > 0 --. z := x - 1 denotes a statement

that can execute in a state s only if both s(at(a)) and s(x) > 0 hold. Since

the semantics of true --+ T is identical to the semantics of T, we consider every

statement to be guarded.

Composing B1 -+ T1,..., Bk -- Tk, using statement construction rule Gi, pro-



31

duces a statement T = Gi(B1 -T,..., BL -- Tk). In general, this composition

produces an implicit action, gT = 9 Gj(B--.T1,...,Bk-Tk)' possibly null, that is part

of T and is used to coordinate the components of T. For example, the implicit

action might be one that evaluates the guards of the component statements, and

based on the results, selects a particular component for execution. We will as-

sume that this implicit action is atomic. Thus, for any such 9T, Atom(gT) is

true.

In Guarded Commands, the implicit action of the composition construction

rule (i.e., G;) is empty, whereas the implicit action associated with iteration

construction rule (i.e., Gdo) is not empty. For

T = Gdo(B -- T,..., Bk --+ Tk),

the implicit action gT is required to select a component guarded statement, say

B -- Ti, such that Bi holds, and transfer control to T (i.e., at(Ti) becomes

true); if such B --+ Ti cannot be found, control is transferred to the statement

immediately following T (i.e., after(T) becomes true).

A statement or an implicit action is called an executable unit. We assume

that a program is a statement, thus an executable unit. For an executable unit

T, let Comps(T) denote the set of the components of T,

Comps(T) t if Atom(T) (3.1)IgT, Ti,..., Tk} if T = Gi(Bi --+ T,..., Bk -+ Tk)

and let Comp*(T) denote the reflexive transitive closure of Comps(T). The set

As of the atomic actions of program S is defined as

As = (a E Comps*(S) I Atom(a)}.

3.1.2 Behaviors of a Proof Outline

The behavior axioms of a proof outline PO(S) guarantee that if PO(S) is valid

then every execution of S that starts in a state where assertions associated with



32

active control points hold, is a behavior of PO(S). The behavior axioms involve

control axioms CAS and an invariance axiom Inv(PO(S)). The control axioms

characterize the behaviors with respect to the control variables. They guarantee

that, with respect to control, behaviors can be considered executions of a program

with the same structure as S. For example, in an execution of a program, it is

never the case that both the entry and exit control points of the same action

are active simultaneously. Also, it is always the case that if the entry control

point of an action is active then it stays active until that action is executed. The

control axioms guarantee that behaviors satisfy the above, and other, control

requirements.

The invariance axiom, denoted Int(PO(S)), further restricts behaviors based

on the assertions in PO(S). Its purpose is to guarantee that states in a behavior

satisfy assertions corresponding to the active control points in a state.

Formally, B(y).Po(s), the set of behaviors specified by (U).PO(S), is given by

B(1!.Po(s) = {01 E E I a = (3V : CAS A Inv(PO(S)))}. (3.2)

In the following subsections, we present the control and invariance axioms in

detail.

Control Axioms

The control axioms for a proof outline PO(S) depend on the program S and the

semantics of the programming language. Recall that in Section 2.1.3 we stated

that cointraints would be included in the behavior axioms. In keeping with

that deciso, the first two types of control axioms are those that constrain the

assignment of values to control-variables.

Recall that definitions-formulas of the form x = E, where x is a variable and

E is an expression involving variables-are a special type of constraint. For an

executable unit T, let DEF(T) denote a set of definitions and let CNSR(T) denote



33

the set of remaining constraints. The set DEF(T) is defined as

{"in(T) = at(T)"} if Atom(T)

{D,.(T), Di.(T)} if T is the whole program

DEF(T) = DBI(T)' 1 (3.3)

DIn(T) if T = Gi(Bi --+ T1 ,... ,Bk T )

D.fte,(T)

where D_ denotes the definition "X = B." and B, is a Boolean expression over

control variables. For any primitive control variable x we define Dr to be the

null formula. Note that for a program T, according to (3.3), the control variable

after(T) is primitive. Let DEF*(T) denote the transitive closure of DEF(T):

DEF*(T) = DEF(T) U ( U DEF*(Q)). (3.4)

QEComps(T)

The control-variable definitions specified by a program S are the elements of

DEF*(S).

The set CNSR(T) of the remaining constraints of T, is defined as

CNSR(T) = § if Atom(T) ()
1 {B I I = I... nT} otherwise

where Bj,... , B,. are Boolean expressions over the control variables of Comps(T)

and, possibly, T. Let CNSR*(T) be defined by

CNSR*(T) = CNSR(T) U ( U CNSR*(Q)). (3.6)
QE Comps(T)

The set CNSR*(S) consists of the remaining constraints of program S.

The third type of control axioms are persistence axioms. A persistence axiom

states that an entry control point that becomes active will stay active until its

associated action executes. Only execution of an action a can deactivate control

point at(a) and activate control point after(a). Formally, the persistence axiom

for action a is D(in(a) = (in(a)Uafter(a))).



34

i te fourth and final type of control axiom is the iermination axiom. The ter-

mination axiom captures the fact that once the control point at the end of the pro-

gram becomes active, it stays active thereafter. It is O(after(S) =:> C(after(S))).

A termination axiom allows finite executions (execution of terminating programs)

to be viewed as infinite ones, where the state at termination is stuttered ad in-

finitum.

In summary, the control axioms of proof outline specification PO(S) are:

CA 1 (definitions) The set DEF*(S)

CA 2 (constraints) The set CNSR*(S)

CA 3 (persistence) AGEAs O(in(a) => (in(a) Uafter(a)))

CA 4 (termination) O(after(S) :> O( after(S)))

0

Invariance Axiom

An invariance axiom asserts the invariance of the proof-outline invariant

ipo(s) : A at(a) = prepo(s)(a) A after(S) => postpo(s)(S). (3.7)

sEAs

Formula Ipo(s) is the formal statement of the requirement that whenever a con-

trol point is active in a state, its corresponding assertion holds in that state.

The invmaiance axiom restricts behaviors to be only sequences where every state

satisfie (3.7). Formally,
lnv( PO( S) ): Wp to( s). (3.8)

3.2 Defining 'Implements' for Proof Outlines

We now turn to the question of what it means for one proof outline to implement

another. Since proof outlines are specifications, the answer to this question is



35

given by Implements (2.2). However, in order to use logic for arguing 'imple-

ments' we use the equivalent definition, m-Implements (2.12). In the following,

we discuss the details of using this definition when proof outlines are involved.

Consider two proof outline specifications: (U).PO(H), and PO(L). According

to m-Implements (2.12), in order to prove that PO(L) implements (v).PO(H)

one must show that conditions 1 and 2 hold.

Conditions 1 and 2a are straightforward.

In the case of proof outlines, we can show that 2b is redundant-it follows

from 1 and 2(a)ii. To see this, observe that in proof outlines, actions are specified

by programming language statements. If such a statement specifies an external

action, then it would have to appear unchanged in any implementation. Thus,

any internal variable mentioned in that statement would have to become part'

of every implementation. Internal variables that are so constrained are indistin-

guishable from external variables. So, when proof outlines are used as specifica-

tions, external actions must be specified by statements involving only external

variables. We, therefore, conclude that for an external action a E AH, all free

variables of P6 H are externals. This conclusion, together with NE(L) = NE(H)

(condition 1) implies that pL _ pH = P4. From condition 2(a)ii we infer that

Pa = mLH(P,), and thus conclude that condition 2b holds whenever 1 and 2(a)ii

do.

Finally, in order to satisfy condition 2c, we must prove

(CAL A 0 IPo(L)) = mLH(CAH A 0 IPo(H)). (3.9)

Howeve, showing that (3.9) holds might be difficult. In particular, since a vari-

able name z E N'(H) is mapped by mLH to an expression over N(L), any sepa-

ration between control and invariance in behavior axioms CAH A CIPo(H) might

disappear in mLH(CA H A OIP (H)). Fortunately, if PO(L) is not an arbitrary

proof outline, but one where the structure of program L resembles the structure

of program H, then mLH can be constructed such that internal control variables



36

of H are defined only in terms of control variables of L. This simplifies the proof

of (3.9) and provides a standard way to define mLH for control variables, as we

now see.

3.3 Structural Refinements

A program R is a structural refinement of a program A if the control structure of

A is an abstraction of the control structure of R. We formalize this definition as:

(3.10) structural refinement of executable units: An executable unit T' is

a structural refinement of an executable unit T iff

* Atom(T), or

* T = Gi(BI -- TI,..., Bk -+ Tk), T' = Gi(B -- T,..., B' - Tk), and

for every j E I... k, T is a structural refinement of T, or

* T' is an auxiliary elements augmentation of some T", and T" is a

structural refinement of T.

For example, program L in Section 2.3 is a structural refinement of the Kogram

H in Section 2.3. This is due to the fact that H consists of a single atomic action

a, thus any program will be a structural refinement of H. As another example,

consider the following statement T,

T: if x>0 --+ z:=-z x<0 - skipfi

A structural refinement of T must be an if with two guarded statements. The

guarded statements, however, can be somewhat more complex. For example, the

following statement T' is a structural refinement of T:

T': if x> -dox>0 --*z:=-xod

0 x<O-*z:=z

fi



37

Statement T" below is not a structural refinement of T:

T": if x>0- dox>0 --*x:=-zod

0 x<0-e X:=

x = 0-- skip

fi

The following technical lemma relates Comps*(T') and Comps*(T), when T'

is a structural refinement of T. It will be useful in stating our main results.

Lemma 1 If T' is a structural refinement of T then there ezists a total mapping

h : CompO(T) -+ Comps*(T) such that for any c E Comps*(T), h(c) is the

element of Comps*(T') that is the structural refinement of c.

Proof: By induction, using the definition of structural refinement. 0

The definition of structural refinement for executable units can be extended

to proof outlines as follows:

(3.11) Structural refinement of proof outlines: (U).PO(T') is a structural

refinement of (E).PO(T) iff T' is a structural refinement of T, and, for

every a E A4, h(a) is identical to a.

The significance of identifying structural refinements when proving that one

proof outline implements another is captured by the following theorem. It shows

that a predefined, generic, mapping of the control variables of N(A) can be

used in onstructing a refinement mapping to prove that (W).PO(R), a structural

refinement of (0).PO(A), implements (U).PO(A).

Theorem 2 (implements) If (W).PO(R) is a structural refinement of ().PO(A)

and NE(R) = NE(A), and if there ezists a function m from N(A) to N(R) that

satisfies the following conditions

H-1 For every x E NE(A):
m(X) =:X



38

H-2 For every a E AA:

m(at(a)) = in(h(a))

m(after(a)) = after(h(a))

H-3

m(after(A)) = after(h(A))

H-4 For every derived control variable z E N(A):

m(x) = m(B2,), where "x = B," E DEF*(A)

H-5 If el * e2 is an expression over N(A) then

m(el *e 2 ) = M(el)* M(e 2 )

H-6

AoEAA((Ipo(R) A m(at(a))) =*t m(prepo(A)(a)))
Ipo(R) A m(after(A)) =* m(postpo( A)(A))

then PO(R) implements (rT).PO(A).

In the proof of Theorem 2 (implements), we reason about control variables.

To do so, we must assume that the semantic description of the programming

language provides the necessary apparatus. Among other things, we must assume

that the control axioms are strong enough so that we can prove certain true things

about control aspects of the state. Since Theorem 2 (implements) is formulated

in a manner that is independent of the particular programming language being

used, we must make some assumptions about the logical apparatus available to

us for remaoning about control variables.

The ih t assumption we make is that the set DEF*(S)-the definitions of

derived control variables of program S-allows every derived control variable

to be expressed in terms of primitive control variables only. We say that the

set DEF*(S) is sufficient iff for every derived control variable z, the expression

B. (in the definition D,) can be reduced to an equivalent expression over only

primitives, by repeatedly replacing derived control variables by their definitions

in DEF*(S). Henceforth, we assume that DEF*(S) is sufficient.



39

The second assumption we make is that the control axioms imply that derived

control variables are related properly to the control variables of the components

of their statement.

(3.12) consistent control axioms: For every T E Comp*(S), CAS implies:

at(T) => in(T) (3.13)

A (in(a) =o in(T)) (3.14)
aE Co,,pa*(T)

in(T)= * V in(a) (3.15)
aE COr ,p*(T)

-,(in(T) A after(T)) (3.16)

in(T) =o (i(T)Uafter(T)) (3.17)

The third assumption is that constraints (and definitions) reflect the structure

of the program. Some aspects of control reflect the manner in which executable

units have been composed. Thus, control axioms should be referentially trans-

parent with respect to this composition. Formally,

(3.18) structure: For any statements T and T', such that T = Gi(0 1,. .. ,Ok)

and T' = Gi(011,... , 0) (where Oi denotes Ci -+ Ti), if B E CNSR(T) then

B,.,.....' E CNSR(T'). Similarly for B E DEF(T).

Our fourth and last assumption about the control semantics of the program-

ming language restricts constraint-expressions--elements of CNSR*(S) or right

hand sides of definitions in DEF*(S)--for S. To understand the need for this

assumption, recall that when PO(L) is a structural refinement of PO(H), an in-

ternal (atomic) action a E AI is structurally refined by h(a) E Comps*(L), where

h(a) is not necessarily atomic. By structure (3.18), every constraint-expression

of PO(H) that involves a has a matching constraint-expression of PO(L) where

references to a are replaced by references to h(a). This means that for any be-

havior of PO(L), whenever control is either at the start of h(a) or at the end



40

of h(a), states are constrained to satisfy these matching constraint-expressions.

When such states are viewed as states of PO(H), they satisfy the constraint-

expressions involving a. This, however, is not enough because we have decided

that states in PO(L) for which control is inside h(a) will be viewed as states in

PO(H) for which control is at the start of a. Thus, a state of PO(L) in which a

control point inside h(a) is active, must satisfy constraint-expressions involving

at(a) when viewed as a state of PO(H). This leads to a requirement that if

states of PO(L) satisfy constraint-expressions involving at(h(a)) and after(h(a))

they must also satisfy the same constraint-expressions where every occurrence of

at(h(a)) is replaced by in(h(a)). We call this property coverage since it -replies

that constraint-expressions hold for all the control points covered by in(h(a)).

Note, for atomic h(a) this requirement is trivial since at(h(a)) = in(h(a)).

(3.19) coverage: For any program S, if "z = B" is in DEF*(S) or B is a con-

straint in CNSR*(S), and if B' is any expression derived from B by replac-

ing derived variables in B by the right hand side of their definition from

DEF*(S), then 2

(DEF*(S) A CNSR*(S)) * (B' (B').).

In proving Theorem 2 (implements) we use several lemmas, which we present

here together with their proofs.

Lemma 3 (invariance) If H-1 through H-6 hold, then the following formula is

valid:

IPo(R) =' r(IPo(A))

Proof:

1 IPo(R) =* m(IPo(A))

2The notation E_9 is a shorthand for E-'.t(u),a(:)..., where at(u), at(v),... denote all the at

control variables in E.



41

1. 1 'P0(R) assumption

1.2 Consider any a E AA

1.3.1 m(at(a)) assumption

1.3.2 IP0(R) A m(at(a)) A - mcl on 1.1, 1.3.1

1.3.3 m(prepo(A)(a)) MP H-6, 1.3.2

1.4 AaEAA m(at(a)) m(prepO(A)(a)) 1.2, 1.3

1.15 m(AaEAA(at(a) prepo(A)(a))) 1.4, H-5

1.6 m(after(A)) =4 m(POstPO(A)(A))

1.6.1 m(after(A)) assumption.

1.6.2 m(POStPO(A)(A))

1.6.2.1 IP(R) A m(after(A)) A -inci on 1.1, 1.6.1

1.6.2.2 m(POstP0 (A)(A)) MP 1.6.2.1, H-6

1. 7 M (AEAA(at(a)z ~prep0(A)(a))) A (mn(after (A)) : m(POStPO(A) (A)))

A -mdc 1.5, 1.6

1. 8 M (AaEAA(at(a) =*' PreP0 ( A4)(a)) A (m(after(A)) =: 'm(POstPO(A)(A))))

H1-5 on 1.7

1.9 rn(IP (A)) 1.8, Equation (3.7)

0

Lemma 4 (unless) If H-I throusgh H-6 hold, then the following formula is valid:



42

Proof:

1 Consider any b E AA

2 O(in(h(b)) * (in(h(b))Uafter(h(b)))) o

O(m(at(b)) o (m(at(b))Um(after(b))))

2.1 O(in(h(b)) =* (in(h(b)) Uafter(h(b)))) assumption

2.2 m(at(b)) = in(h(b)) 1 and H-2

2.3 O(m(at(b)) = in(h(b))) 0-generalization, 2.2

2.4 O(m(at(b)) = (m(at(b)) Uafter(h(b)))) TL 2.1, 2.3

2.5 m(after(b)) = after(h(b)) 1 and H-2

2.6 O(m(after(b)) = after(h(b))) O-generalization, 2.5

2.7 O(m(at(b)) = (m(at(b))Um(after(b)))) TL 2.6, 2.4

3 By 2 and 1 conclude

AbEAA O(in(h(b)) =; (in(h(b)) Uafter(h(b)))) =
O~m( at(b)) =o (m (at (b)) m ( after (b) ))).

0

The next lemma shows that m, as defined in Theorem 2 (implements), pre-

serves the constraints of specification PO(A). Thus, a constraint B E CNSR*(A)

is mapped by m to a formula m(B) that holds at any state of a behavior of

PO(R).

Lemma 5 (constraints) If the hypotheses of Theorem 2 (implements) hold, then

for any constraint B E CNSR*(A), the formula (DEF*(R) A CNSR*(R)) =* r(B) is

valid.



43

Proof: For a definition "x(T) = B,(T)" in DEF*(A), define a D.(T) ezpansion

step to be substitution of the expression Bz(T) for all the occurrences of a derived

control variable x(T), where x can be "at", "in", or "after", and T is an exe-

cutable unit. Consider any constraint B in CNSR*(A). Let Dz(T,)... D_(T.) be a

sequence of expansion steps such that the ith step is applied to B i- 1, resulting

in B', where B = BO, and B" mentions primitive control variables only. Since

DEF*(A) is sufficient, such an expansion sequence exists.

From H-5 we infer

m(B) =... m(B"). (3.20)

From the fact that B' is primitive, and from hypotheses H-2 and H-3 we get:3

m(B n ) =tnaI(),ofWK)

Observe that

in,(h(.)).,,,(h(.))h()i

and thus, using (3.20), we have

m(B) = m(B") = ((B")(') )qt (3.21)

Given (3.21), our goal is to show

(DEF*(R) A CNSR*(R)) =* ((B"(-) (3.22)

To show (3.22) we first show that B(')) is in CNSR*(R). Then, using

B('))E CONS R*(R)

we will argue that

(DEF*(R) A CNSR*(R)) € (Bn)(. (3.23)

3We use the notation (.) for an action or statement name in any control variable. For example,

,al,,, A a.(b) A af.e,= at(h(a))A t(h(b)) A after(h(T))(4t~) ^ t~b)^ ,.. "\-"n(h(.))..ter(h(.))



44

Finally, by coverage (3.19) we will conclude that (3.22)--our goal-holds. The

details follow.

Due to (3.6), having B a constraint of A (i.e., B E CNSR*(A)) implies that,

for some T E Comps*(A), B is a constraint of T (i.e., B E CNSR(T)). From

the hypotheses of Theorem 2 (implements), R is a structural refinement of A.

Therefore, by Lemma 1, we get h(T) E Compe*(R) and that h(T) is a structural

refinement of T. From B E CNSR(T) and h(T) a structural refijement of T, we

infer, by structure (3.18), that Bi) E CNSR(h(T)). Thus, from

h(T) E Comp8*(R)

and (3.6) we infer

E CNSR*(R). (3.24).

Now we show that from (3.24) and DEF*(R) it is possible to infer (B')(') thus

proving (3.23). Recall that Dz(T) denotes a definition in DEF*(A). By structural

refinement, h(Tj) E Compse(R), and from structure (3.18) we can infer that

Dz(h(T)) is a definition in DEF*(R). So, Dx(h(T,)) ... D,(h(T,)) are all definitions

in DEF*(R), and they can be used to derive (B())n from B*). This proves

(DEF*(R) A CNSR*(R)) =o (B())). (3.25)

By induction on n one can prove

(B) (- ) ) (3.26)

From (3.25) and (3.26) conclude that (3.23) holds.

Finaly, from coverage (3.19) and (3.23) we conclude that (3.22) is valid. 0

Lemma 6 (termination) If the hypotheses of Theorem 2 (implements) hold, then

the formula

(after(R) .(m(ae(A))a

is valid.



45

Proof:

I (after(R) . [](after(R))) (m(after(A)) =*- O(m(after(A))))

1.1 after(R) #- 1(after(R)) assumption

1.2 h(A) = R R is a structural refinement of A

1.3 m(after(A)) = after(h(A)) Hypothesis H-3

1.4 m(after(A)) = after(R) 1.2, 1.3

1.5 re(after(A)) #, [](re(after(A))) TL 1.1, 1.4

0

The proof of Theorem 2 (implements) has two major steps. In the first one,

the above lemmas are used to show

(CAR A OIPo(R)) =: m(CAA A OIPO(A)).

In the second step, the result of the first step together with the hypotheses of

the theorem and the fact that we are dealing with proof outlines, are used to

show that all the conditions of m-Implements (2.12) are satisfied, thus PO(R)

implements (r).PO(A). The formal proof follows.

Proof:

1 (CAR A 0Ieo(R)) = m(CAA A 03Ipo(A))

1.1 (CAR A 0 IPo(R)) assumption

1.2 Ipo(R) #' M (Ipo(A)) Lemma 3

1.3 OIPo(R) A -elim 1.1

1.4 Om(IPo(A)) TL and MP 1.3, 1.2

1.5 m(DEF*(A)) H-4



46

1.6 M(cNsR,*(A)) CAR of 1.1 and Lemma 5

1.7 ^ EAA (O(m(in(b)) #, (rn(in (b)) U m(after (b)))))

1.7.1 For every b E AA: h(b) E Comps*(R)

R is a structural refinement of A

1.7.2 For every b E AA: in(b) = at(b) Equation (3.3)

1.7.3 For every b E AA: m(in(b)) =m(at(b)) 1.7.2 and H-4

1.7.4 AbEAA(O(in(h(b)) =€ (in(h(b))Uafter(h(b)))))

1.1, Equation (3.17)

1-7.5 hbEA (O(m(,,t(b)) = (m (,t(b)) U m(after(b)))))

MP Lemma 4, 1.7.4

1.7.6 AbEAA(Ol(m(in(b)) = (m(in(b))Um(after(b))))) 1.7.5, 1.7.3

1.8 O(after(R) = O3(after(R))) A -elim on 1.1

1.9 O(m(after(A)) =o Om((after(A)))) MP Lemma 6,1.8

1.10 m(CAA) A-incl 1.9, 1.7, 1.6, 1.5

1.11 m(CAA) A Em(Ipo(A)) A -incl 1.10, 1.4

1.12 m(CAA A OIPO(A)) H-5 on 1.11

So, we have shown

(CAR A OIPO(R)) t m(CAA A llpo(A))

which is condition 2c of m-Implements (2.12). Due to the hypothesis that

NE(R) = NE(A), condition 1 of m-Implements (2.12) is satisfied. The hy-

pothesis that m is a function and that it satisfies Hypothesis H-1, implies that

condition 2a of m-Implements (2.12) is satisfied. Finally, as we argued in Sec-

tion 3.2, condition 2b of m-Implements (2.12) is satisfied as well. Thus, by

m-Implements (2.12), we conclude that PO(R) implements (U).PO(A). 0



47

3.4 Alternative Mapping for Control Variables

In Theorem 2 (implements) we made a choice with respect to the definition of

m(at(a)), for any action a E AI. We decided that as long as control is inside

h(a) it will be as if control is at the start of a. This decision led to Hypothesis H-2

of the theorem,

m(at(a)) = in(h(a))

m(after(a)) = after(h(a)).

This decision imposes a restriction on h(a)-as long as a state s of the imple-

mentiag program satisfies sn(h(a)), it must satisfy m(prepo()(a)-so that F(s)

satisfies at(a) =* prepo(H)(a). In order to satisfy this restriction, it may be neces-

sary to introduce auxiliary variables. These are used to record state information

used in defining m.

Another alternative is to allow the mapping of some control points inside h(a)

to the control point denoted by after(a). Rather than stuttering only at(a), as

our present method does, we must now stutter after(a) as well. In fact, we must

require that m(after(a)) =. (m(after(a))Uafter(h(a))) hold for every behavior of

PO(L). This requirement, in turn, implies that m(postpo(H)(a)) must hold as

long as m(after(a)) does.

Since we have found no benefit for "switching in the middle" we decided to

adopt "switching at the end".

3.5 A Remark on Structural Refinement

The significance of structural refinement is that it formalizes the well known

process of program derivation by step-wise refinement. Whenever we replace

an action in a program by some collection of actions, the resulting program is

a structural refinement of the original one. Not only does using structural re-

finement simplify showing that one proof outline implements another, it is what



48

we do anyway in refining programs. Given these observations, structural refine-

ment, and proof-outline specifications become the cornerstones of a methodology

for deriving multiple-server implementations of a service, from single-server im-

plementations of that service. The methodology, and examples are presented in

Chapter 4.



Chapter 4

Designing Distributed

Implementations of Services

We now present a methodology for designing multiple-server implementations of

services. The methodology is based on constructing a structural refinement of a

proof outline for a single-server implementation. In effect, we view a single-server

implementation of a service as an abstraction that hides details of a multiple-

server implementation. For that reason, we use A (abstract) to denote a single-

server implementation and R (real) to denote the multiple-server implementation.

We start by presenting a derivation of a multiple-server implementation of

a mutual exclusion service. We then explain how the methods in this example

can be generalized and describe a methodology that embodies the generalization.

We conclude this chapter with the derivation of multiple-server implementation

of an immutable-set service.

4.1 A Mutual Exclusion Service

Consider the problem of designing a mutual exclusion service for clients cl,. .. , c".

The program of each client has a critical section and a non-critical section. We

must devise a protocol that guarantees at most one client executes in its critical

49



'4

50

PO(A): {nxt = 0 A g=0 A (I: A tktp < g)}

cobegin III <P<.

PO(cp): {tktp, < nzt < g A I}
c.: do true --

{tktp < nxt < g A I
NCSp
{tktp < nxt < g A I)

getp: ( g, tktp := g + 1,g )

{nxt < tktp A I A (Xp: A tktt $ tktp)}

enterp: (if nxt = tktp -- skipfi}
{nxt = tktp A I A Xp}

csp
{nxt = tktp A I A Xp}

exitp: nxt := nxt + 1
{tktp < nzt < g A I}

od
{faiae}

coend
{false}

Figure 4.1: A single-server implementation of mutual exclusion.

section at any time. Denoting the critical section for process cp by CS., an

outline of such a protocol was given in Figure 1.1. In that figure, clients use

the two services: tickets, and guard. Therefore, we can derive a distributed

mutual exclusion service by constructing multiple-server implementations of these

services. Here we consider only the guard service.

We derive a multiple-server implementation of the guard service, by using a

refinement mapping and constructing a structural refinement of a single-server

implementation of that service.

4.1.1 A Single-Server Implementation

A proof outline including a single-server implementation of both the tickets and

guard services is given in Figure 4.1. In it, the service implementation (client



51

stubs and server) appears in-line in client programs. This is done to avoid reason-

ing in terms of procedure calls. Actions and variables that become visible due to

this in-line expansion are elements of the service implementation and, therefore,

are internal elements of the proof outline PO(A). These include variables g, nxt,

and actions getp, enterp, and exitp.

Proof outline P0(A) can be derived using standard techniques. The assertions

in PO(A) must be strong enough to prove mutual ezclusion, a safety property that

can be formalized as:

0 A ^(in(CSp) A i,(CSq)) (4.1)
1:<p,q:m,p#q

Viewing PO(A) as a specification, we prove that every behavior of PO(A)

satisfies (4.1) by first showing that 1PO(A) =0 Ai:5p,qva,pq "(in(CSp) A in(CSq))"

is valid, and then, using validity of Int(PO(S)) (3.8) which asserts 0 1PO(A),

conclude that every behavior of P0(A) satisfies (4.1).

The proof outline PO(A) is valid. Thus every execution of A, if started at

a state that satisfies IPO(A), is a behavior of PO(A), implying that every such

execution satisfies (4.1).

4.1.2 Deriving Multiple-Server Implementations

Proof outline PO(A) above is in terms of single-server implementations of both

the tickets and guard services. Suppose that we desire a multiple-server imple-

mentatiou of the guard service. Let there be k servers, each a replica of the

single uiwer that maintained nxt in A. Thus, our goal is to derive an implemen-

tation of the guard service that is based on nxtl,..., nxth instead of being based

on nxt. To achieve this goal, we design an implementation for the specification

(U).P0(A), where Vr is a list of the elements of the set

{ nxt U I at(enter}U), after(enter,), at(exit,), after(exit,), enter,, exit, }.
1 <_<,



52

Observe that (i).PO(A) explicitly restricts potential implementations to change

only server related elements.

To design an implementation for (u).PO(A), we postulate a mapping mRA

that defines nzt in terms of nxtl,..., nXtk and use MRA to derive a proof outline

PO(R) that satisfies the hypotheses of Theorem 2 (implements). This allows

the conclusion that PO(R) implements (TF).PO(A), which, in turn, implies that

PO(R) satisfies (4.1). Moreover, if PO(R) is valid, then we can conclude that R,

when started in a state that satisfies Ipo(R), also satisfies (4.1).

When using Theorem 2 (implements) for proving that one proof outline im-

plements another, candidate refinement mappings are constrained by hypotheses

H-1-11-6. In fact, all that is necessary in defining the refinement mapping is a

mapping of internal variables that are not also control variables because H-1-H-"

define the mapping for control variables. For the single-server implementation of

the guard service, there is only one such variable: nxt.

In Section 1.2 (Equation (1.1)) we presented a mapping for nxt that required

keeping nxtl,...,nxtk equal. Another possible mapping for nxt is obtained by

inventing a variable hotCopy and defining mRA(nxt) to equal nxtAgCopy. The

disadvantage of using this refinement mapping is that as long as hotCopy does

not change, the service is being implemented in terms of a single server-the

one indicated by hotCopy. And, to allow hotCopy to change, requires another

protocol.

Yet another mapping for nxt is

MRA(nzt) = max(nxti). (4.2)

1l<<k

This mapping defines the value of nxt to be the maximum of nxt,...,nxtk.

From an engineering point of view, (4.2) is attractive because it is defined in

any state and does not require that updates to nxt 1 ,... , nXtk be coordinated.

Choosing a refinement mapping reflects the experience, ingenuity, and intuition

of the designer; different choices can lead to implementation that differ in their



53

PO(?): {max(nxti)=0 A g=0 A (I: A tktp <g)}
1<1<k 1<p<n

cobegin IIl<<,
PO(cp): {tktp < max(nxtj) < g A I}1<1r<k

cp: do true -+

{tktp < max(nxt) < g A I}
1<1<k

NCSp
{tktp < max(nxtj) < g A I}

1<1<k
getp: g,tktp := g + 1,g

{max(nzt) < tktp A I A (Xp: A tkt # tktp)}
1<1<k lop

enterp: (if nzt = tktp -+ skip fi )
{max(nzt) = tktp A I A Xp}

Cs,
{max(nxt)= tktp A I A Xp}1<1<k

exit.: nzt := nxt + 1
{tktp < max(nxtt) < g A I}

od
{faiae}I

coend

Figure 4.2: Translated assertions.

performance costs.

Having selected mRA as a candidate refinement mapping, our goal is to derive

a proof outline PO(R) that is a structural refinement of (v).PO(A), and for which

the hypotheses of Theorem 2 (implements) are satisfied.

We sturt by reformulating the assertions in PO(A) as assertions with free

variables from N(R), such that an assertion Q in PO(A) is reformulated MRA(Q).

Doing this guarantees that for every external control point (i.e., a control point

belonging to an external action) hypothesis H-6 is satisfied. The resulting (not

necessarily valid) proof outline, PO(/?), is shown in Figure 4.2.

In PO(RT), the triples for internal actions enterp, ezitp are not valid-the



54

actions modify nxt and the assertions are in terms of nxtj,..., nxt k . If we view

PO(1?) as a specification, the fact that it is not valid is not an impediment

to proving that PO(R') implements (9).PO(A). However, proving that PO(R')

implements (v).PO(A) will not allow us to conclude anything about R' itself

unless PO(R') is valid. So, validity of PO(R') is essential for our goal of deriving

a multiple-server implementation of the mutual exclusion service. Note also that

restoring validity of PO(Rk) coincides with the goal of deriving guard service

implementation in terms of nxtl,...,nxtk-we want to replace actions enterp

and exitp by programs that use nxtl,..., nxtk instead of nxt.

In the following, h(a), h'(a), etc., denote candidate replacement programs for

an action a E ApO(A). Since a is an atomic action, any statement is a structural

refinement of a. Define PO(h(a)) to be a proof outline of h(a).

Derivation of PO(h(a)) is driven by two requirements. First, to satisfy Hy-

pothesis H-6 of Theorem 2, PO(h(a)) must satisfy

po(,(.)) A in(h(a)) = prepo(R,)(a). (4.3)

Second, in order to restore validity in PO(Rk), proof outline PO(h(a)) must also

satisfy
prepo(R,)(a )  :, pre(PO(h(a)))(4)

post(PO(h(a))) > POstPOR1)(a).

In light of this, we now present several possible structural refinements for actions

enterp and exi t p .

RefiniDg enter ,

A first approximation for the refinement of enterp is given in Figure 4.3. This

proof outline is obtained by observing that the difference between the precondi-

tion and postcondition of enterp in PO(1?) is that the postcondition ensures

that states satisfy both the precondition and maxl<1<k(nxtl) = tktp.1  The

'By definition, execution of ( if maxi<:<k(nzt)= tktp - skip fl ) is delayed until the
condition maxl<t<k(nztl)= tktp holds.



55

PO(h(enter,)): { max(nxt) < tktp A I A (X,: A tkt, 5 tktn)}
1<<k 1$

h(enterp): (if max<<k(nxtl)= tktp --- skip fi )
{ max(nzti) = tkt, A I A Xp}

Figure 4.3: A first step in refining enterp.

reader can verify that (4.3) and (4.4) are both satisfied by this proof outline.

Thus, PO(h(enter,)) is (theoretically) an acceptable refinement of enterp. How-

ever, h(enterp) specifies an action that calculates the maximum of nxtl,..., nxtk

atomically, which, from a practical point of view, is an expensive operation to

implement. This suggests that we look further.

The atomicity requirement of h(enter,) can be relaxed. The insight leading to

that relaxation is obtained by reformulating pre(h(enter,)) and post(h(enter,)).

By definition, maxI<I<k(nxtI) : tktp in the precondition is equivalent to

( A (nztl < tktp)). (4.5)
1<L<k

Similarly, maxl<l<k(nxtI) = t'-tp in the postcondition is equivalent to

( (nxti tkt,)) A ( V (nxt1 = tktp)). (4.6)
1<1<k 1<1<k

Observe that (4.6) results from strengthening (4.5) with the conjunct

V (nxtl = tktp).

1<1<k

A proof outline containing an if statement to implement this strengthening is

given in Figure 4.4. Although the action in Figure 4.4 does not relax the atom-

icity requirement, it can be implemented using a cobegin statement as shown

in Figure 4.5. This cobegin terminates only if nxtl,...,nzt are incremented

whenever any one of them is, and results in an unnecessary delay for enter. To

avoid this unnecessary delay, we introduce a variable done, for every client cP,

that marks the server instance j for which nxtj = tktp holds. One option is to



56

{A (nxt 1 ! tkt,) A I A Xp}
I <I<k

(if Vl<,<k(nxt, = tkip) -. skip fi

{A (nxtj :5tktp) A V (nxt, = tktp) A I A X,}
1<1<k 1<1<k

Figure 4.4: A second step in refining enterp.

{A (nxtj tktp) A I A Xp}
I <I~k

cobegin 111< 1 <k

{A (nxt 1 : ,tkt) A I A X
1<1<k

if razti = tkt, --. skip fi

{A (nxt1 5 tkt,,) A razti = tktp A I A X,,}
1<k

coend

{A (nzti ! iktp) A V (nxt 1 =tktp) A I A Xp}
1<1<k 1<1<k

Figure 4.5: A third step in refining enter,.



57

PO(h'(enterp)): { A (nxtj <_ tkt,) A I A Xp}
1<1<k

done, := 0

{ A (nxtj<tkt,)^I^X, p}
1<1<k

cobegin II<j:_k
{(L,: A (nxt 1 _< tktp)) A I A Xp A D}

(if nxtj = tktp A donep = 0 --+ donep :=j
a donep 0 --+ skip
fi)
{Lp A (Ep: Vl<l<k(nxtl = tktp)) A

I A Dp A donep # O}
coend

{L, A E, A I A Xp A Dp A done, #O }

Figure 4.6: A cobegin refinement of enterp.

implement donep as a Boolean that is initialized to false upon entry to the cobe-

gin and set to true once such a server instance is found. More useful, though, is

to store in donep the identity of the server instance j for which nzti = tktp (i.e.,

the server instance that actually gave permission to enter the critical section).

To do this, the following is used in h(enter,):

Dp: 0 < donep <_ k A donep # 0 = nxtdonep = tktP.

It is straightforward to verify that (D. A donep # 0) =* Vl<,<k(nxtl = tktp). The

resulting cobegin refinement of enter, is given in Figure 4.6. The reader may

verify that PO(h(enterp)) satisfies both (4.3) and (4.4), and that it is valid.

Refining exit,

Action exitp of Figure 4.2 must be replaced by a program that increments

maxl<l<k(nxti). One method is to increment each of nxtl, nXt2,..., nxtk. This,

however, is inefficient. Another method is to find a server instance j for which

nxti = maxl<L<k(nxtl) holds, and increment nxti. This can be described by

h(exitp): Find j such that nztj = maxj<j<(nxti) and increment nxti.



'4

58

PO(h(exitp)): {fnxtdone, = max (nxti) = tktp A I A Xp A DpA donep # O}

nXtdonep := nXtdonep + 1
{tkt < max(nztj)<g A I}

1<<k

Figure 4.7: Refining exitp.

However, given PO(h'(enterp)) of Figure 4.6, calculating maxl<1<k(nxtl) and

searching for the server j for which nxti = maxl<1<k(nxti) holds is not necessary.

Due to the conjuncts Dp and donep j 0 in post(PO(h'(enterp))), we conclude

that nZtdone, = maxl<l<k(nxtl) holds, and so incrementing nXtdonep, as shown in

Figure 4.7, is all that is needed. It is straightforward to verify that PO(h(exitp))

is valid, and that it satisfies both (4.3) and (4.4).

A complete multiple-server implementation

A complete specification PO(R) of a multiple-server implementation results from

replacing actions enter, and exzitp of Figure 4.2 by their proof outline refinements,

PO(h'(enterp)) of Figure 4.6 and PO(h(exitp)) of Figure 4.7. The proof outline

PO(R) is presented in Figure 4.8.

Proof outline PO(R) of Figure 4.8 implements (u).PO(A). This follows from

the fact that due to the way we constructed R from A, PO(R) is a structural

refinement of (u).PO(A), and from the fact that proof outlines PO(h'(enterp))

and PO(h(ezit,)) satisfy both (4.3) and (4.4).

The multiple-server implementation of the mutual exclusion service given in

PO(R) has a problem. Once some server variable nxtj is incremented in h(exitp),

this variable determines the value of maxl<<k(nxtl) thereafter. Thus, some of the

disadvantages of a single-server implementation are retained. This problem can

be solved by introducing another program, consisting completely of internal vari-

ables and actions, that repeatedly ("in the background") updates nxtl,.. . , nrzt

to follow maxl<,<k(nxtl). An outline of such a program is given in Figure 4.9.

A true multiple-server implementation of the mutual exclusion servicc can



59

PG<R): {(P : max (nxti)=0 A g=0) A (,: A tkt < g)}

cobegin 11:5~
{tktp < max(nxti) !<,g A II

1<1<k
c.: do true --+

NCSp
{tkt, < max(nxtj) < g A I}

get,: (g,tktp := g+ 11g

{A (nxt 1 :5tktp) A I A (X,: Atkt1 #?6tkt,)}
1<1<klo

h'(erater,): done-, := 0
{(L,: A (nxt 1 :5tktp)) A I A XpA DI

1<1<k
cobeginjjI<j:5k {Lp A IAXpADp}

(if nxti = tct A done,=O0 --. done, =j
done #40 -+skip

fi ) {L, A (E, : V1<i<k(nxti = tktp)) A
I A X A D A done 0}0

coend
{max (nzt) =tktp A IA X, A D A done #40}

Cs,
,(max (nxti) =tktp A I A X A D A done #60}

h(ezitp): {flxtd..Re, xxl = tktp A I A Xp}
IrI~t~nep xtdotte, + 1

{tkt, < max (nxt1 ) :5 g A I)

od {false}
coend (false)}

Figure 4.8: A distributed mutual exclusion.



60

{1: ( A nxti < max(nxtj)) A ( V nxti = max(nxtl))}
1<i<k - 1<<k 1<<k<<k

PO(bkgrnd): cobegin IIl<,<k
{ I}
do true - nxt, max(nxt,nxti)
{11}
f true -- nxt, := max(nxt, nXt 2 )
{I1}

true -- nxt, := max(nxtr, nxtk)
{I1}

od
{false}

coend
{false}

Figure 4.9: A background update of server's state (gossip).

PO(TR): {max(nxti)=0 A g=0) A A tktp<g}
l<1<k < n

cobegin
P0(R)II
PO( bkgrnd)

coend
{false}

Figure 4.10: A multiple-server implementation of the mutual exclusion service.

be constructed by a concurrent composition of P0(R) and PO(bkgrnd), resulting

in PO(TR) of Figure 4.10. The proof that PO(TR) implements P0(R) is

straightforward. It is based on classifying all variables and actions of P0(R) as

externals, and classifying all variables and actions in PO(bkgrnd) as internals.

With this classification, the actual proof of PO(TR) implements P0(R) is based

on (3.9). In [LL86], the actions of programs like PO(bkgrnd) of Figure 4.9 are

described as "gossip".

Finally, using the cobegin rule of [Sch], it is straightforward to show that



61

PO(TR) is valid. This allows concluding that executions of TR, when started in

a state that satisfies IPO(TR), are all behaviors of PO(TR) and, thus, satisfy (4.1).

4.2 A Methodology for Designing Distributed
Services

The derivation of the distributed mutual-exclusion algorithm in Section 4.1, illus-

trates a general methodology for designing distributed services. The methodology

involves three steps:

1. Design a single-server implementation of the service with a proof outline

PO(A). Let V be the list of server variables and actions and (v).PO(A) be

the resulting specification. Internal actions of (u).PO(A) are assumed tQ

be atomic.

2. Fix a concrete state space ER (i.e., NE(R), N'(R)), and select mRA, a

candidate refinement mapping. Define mpA so that hypotheses H-1-H-5 of

Theorem 2 (implements) are satisfied.

3. Use mRA to obtain PO(R)-the multiple-server implementation-as fol-

lows:

(a) Translate every assertion Q in PO(A) to the expression mRA(Q).

Let PO(Rk) denote the resulting (not necessarily valid) proof outline.

Note, due to this translation, for every T E Comps*(RI), the expres-

ions
prepo(R,)(T) - mRA(prepO(A)(T))

PostPo(R,)(T) = mRA(PostPO(A)(T))

both hold.



".i

62

(b) Replace in PO(1?) every internal action a by a proof outline PO(h(a))

that satisfies
prepo()(a) =o pre(PO(h(a))) (7)

post( PO(h( a) )) =;- POstPO(R,) ( a )

and also satisfies

(in(h(a)) A IpO(h(.))) = prepo(R)(h(a)). (4.8)

(c) Ensure that for every state s in every behavior of the resulting proof

outline PO(R), and for every name x E N(A), the value s(mRA(x)) is

unique. 0

This methodology guarantees that PO(R) implements (V).PO(A), as shown by

the following theorem.

Theorem 7 If PO(R) is derived from (u).PO(A) by using the methodology above,

then PO(R) implements (V).PO(A).

Proof: The proof is based on showing that the hypotheses of Theorem 2 (im-

plements) are satisfied.

First, we show that PO(R) is a structural refinement of (V).PO(A). It suffices

to show that (i) R is a structural refinement of A and (ii) that for every external

action a of A, its structural refinement h(a) is a itself (see Structural refinement

of proof outlines (3.11)). To show (i), recall that any statement is a structural

refinement of an atomic action. Since server invocations in A are atomic (due

to step 1) and, by our methodology, R is obtained from A by replacing server

invocations by statements and leaving all the rest unchanged, R is a structural

refinement of A. Requirement (ii) follows from the fact that only the internal

actions of A-server invocations-are changed in order to obtain R, thus, for any

external action a, h(a) = a. Using Structural refinement of proof outlines (3.11),

from (i) and (ii) we conclude that PO(R) is a structural refinement of (U).PO(A).



63

Second, we must show that refinement mapping mRA is well-defined. Since in

step (3) of our methodology PO(R) was derived from PO(A) using a refinement

mapping, and the mapping is uniquely defined for every state of PO(R) and every

variable name of PO(A) (step 3c of the methodology), this follows trivially.

Third, we must show that hypotheses H-1 through H-6 of Theorem 2 (im-

plements) hold. By step 2 of our methodology, hypotheses H-1 through H-5 are

satisfied. We now show that hypothesis H-6 is also satisfied.

1 Consider any a E AA

2 ('po(R) A mRA(at(a))) =* mRA(prepo(A)(a))

2.1 (Ipo(R) A mRA(at(a))) assumption

2.2 a E AA V a E A1

2.3 a E .A A = m,(prep ( A)(a))

2.3.1 a E A^ assumption

2.3.2 mRA(prepo ( A)(a))

2.3.2.1 at(a) E NE(A) 2.3.1

2.3.2.2 mRA(at(a)) = at(a) H-1, 2.3.2.1

2.3.2.3 Po(R) A at(a) A -incl on 2.3.2.2, 2.1

2.3.2.4 prepo(R)(a) 2.3.2.3

2.3.2.5 mRA(prepo(A)(a)) 2.3.2.4, step 3a of the methodology.

2.3.3 a E AA =m;, RA(prepo(A)(a)) 2.3.1, 2.3.2

2.4 a E AA 0 mRa(prpo(A)(a))

2.4.1 a E AAI assumption

2.4.2 mRA(prCPO( A)(a))

2.4.2.1 at(a) E NI(A) 2.4.1

2.4.2.2 mRA(at(a)) = in(h(a)) 2.4.2.1, H-2



64

2.4.2.3 IPO(R) A in(h(a)) A -incl 2.4.2.2, 2.1

2.4.2.4 IPO(R) = Ipo(&(,)) step 3b of the methodology.

2.4.2.5 IPo(h(a)) MP 2.1, 2.4.2.4

2.4.2.6 IPO(h(a)) A in(h(a)) A -incl 2.4.2.3, 2.4.2.5

2.4.2.7 prepo(,)(h(a)) MP Equation 4.8, 2.4.2.6

2.4.2.8 mRA(prepo(A)(a)) step 3a of the methodology, 2.4.2.7

2.4.3 a E .AIA =1mnRA(prePo(A)(a)) 2.4.1, 2.4.2

2.5 mRA(prepo(A)(a)) V-elim 2.2, 2.3, 2.4

3 AaEAA((IPO(R) A mRA(at(a))) =* mRA(prepo(A)(a))) 1, 2

4 (IPo(R) A mRA(after(A))) =:, rnA(postpo(A)(A))

4.1 IPO(R) A mRA(after(A)) assumption

4.2 mRA(POStPO(A)(A))

4.2.1 MRA(after(A)) A -elim 4.1

4.2.2 after(R) see Lemma 6

4.2.3 postpo(R)(R) MP 4.1, 4.2.2

4.2.4 mRA(postPo(A)(A)) 4.2.3, and 3a of the methodology.

4.3 (IpO(R) A mRA(after(A))) =1m'RA(pOStPo ( A)(A)) 4.1, 4.2

5 By 3 and 4 conclude

ASEAA((Ipo(R) A mRA(at(a))) =I mRA(pfePo(A)(a)))

Ipo(R) A mRA(after(A)) =* mRA(pOStPo (A)(A))

By ensuring that PO(R) is valid, we can also conclude that executions of the

resulting program R, when started in a state satisfying a given initial condition,



65

are all behaviors of (U).PO(A). In fact, we conjecture that if PO(A) is valid,

PO(R) is a structural refinement of PO(A), and the proof outlines replacing

the internal actions of (V).PO(A) are valid and mutually interference-free, then

PO(R) will be valid.

4.2.1 Performance

A program R that results from applying our methodology is guaranteed to satisfy

the specification, but is not guaranteed to be efficient. In general, the coarser

the atomicity of operations, and the larger the number of servers that must be

involved in performing an operation, the worse will be the performance of the

multiple-server implementation. Two factors contribute significantly to the per-

formance of a multiple-server implementation that is obtained using our method-

ology. The first is the choice of refinement mapping. In Chapter 1, we used

nztl if true

nzt = ... ...

nzt. if true

as a refinement mapping. The resulting implementation (see Figure 1.5) involved

updating all servers atomically. Implementations for the same problem that were

presented in this chapter, are all based on a different refinement mapping

nxt = max(nzti).

1l<<k

This refi t mapping did not impose such an atomicity requirement. So, per-

formamwimaes can be addressed by considering different refinement mappings.

The umad factor affecting performance is the original specification (V).PO(A)

itself. The weaker the specification, the less it constrains an implementation.

Sometimes, in designing a single-server implementation, one does not realize that

certain assertions in PO(A) are stronger than necessary. However, when using

our methodology for deriving the multiple-server implementation, such strong as-

sertions can lead to an implementation that requires large atomic actions. When



66

this happens, one should refer back to PO(A) and check whether it is possible

to weaken assertions that seem to induce the observed performance problems.

We illustrate these ideas about performance in the next section, where we de-

rive a distributed implementation of a set service and show how a change in the

specification can have a dramatic effect on an implementation.

4.3 A Distributed Set

Desired is a multiple-server implementation of a monotonic-set service that sup-

ports operations insert and member. We start by specifying a single-server im-

plementation that maintainm a set S. Then, we derive an implementation of

S that uses a collection of k server instances where server-instance j maintains

set-instance Sj.

4.3.1 A Single-Server Implementation

The server maintains a set S and provides two operations, which can be specified

as proof outlines:

{Ps 1 }} insert(x) {P} (9)

{true} member(z,y) {y = x E S}

4.3.2 A Multiple-Server Implementation

To derive a multiple-server implementation of the set service, we define a refine-

ment mapping that defines set S in terms of set instances S1,... , Sk . Several

different mappings are possible, each producing a different multiple-server imple-

mentation. We use rn, Inl, etc., to denote the mappings.

One such mapping is

r(S)= U S1. (4.10)

It is fairly easy to see that m induces an inexpensive update-an element that is

inserted in any one of the set instances is considered to be in the set. However,



t

67

this mapping does result in an expensive membership operation. In order to test

for membership, all set instances might have to be tested.

Another possible mapping is

m'(S)- n St. (4.11)
1<1<k

In contrast to mapping m (4.10), m' causes updates to be expensive-an element

must be inserted in all set instances before it is considered to be in the set. The

test for membership when m' is used, also is expensive. In the worst case (when

the tested element is a member of the set) all set instances must be tested.

In the following sections we derive a multiple-server implementation of the

set service that is driven by m (4.10).

Implementing insert

We start by translating the assertions in the specification of insert(x). For an

assertion P, m(P) = PS S. It is straightforward to verify that
=~~U~~ =IS ,ult S

For notational convenience, let Q denote S and thus the first outline isnuiz S' ndthsth frs otlnei

Qu1<,<kS, insert(x) {Q}. (4.12)

In order to make (4.12) valid, we must replace the action insert(z) by actions

that invoke inserti operations of server instances 1,... , k. Since S is union of

Si's, a"d amuming that the semantics of an inserti operation is given by

{PSU(z)} inserti(z) {P},

invoking a single inserti will suffice. Formally, since for any j, S appears in Q

only as part of Ul<<kSg, and since set union is associative, we have

U- Q1ukrv

This observation leads to the program in Figu.t -i.11, which is a refinement of

insert that nondeterministically selects a server instance j and invokes insertj.



.4

68

U1 <150 1
{QUt< <kSUlz} }
if D1<i<k true

QSj

insertj(x)
{Q}

fi

{Q}
Figure 4.11: A multiple-server implementation of insert.

Implementing member

Translating the assertions in the specification of member (4.9) we get the triple

{true} member(x,y) {y = x E Ui<t<kSt}. (4.13)

Again, for validity we must replace member(x, y) in (4.13) by operations on the

server instances. Assume that each server j provides an operation memberj with

the following semantics

{true} memberj(x,y) {y = x E Sj}. (4.14)

One possible approach for refining member is to use Boolean variables Yr,.., Yk

to collect the results from the servers and compute y as a function of the yj's.

Although correct, this is expensive. Once any of the yj's becomes true, x E

U1<<kS holds. Still, in order to assert x € Ui<j< Si, the values of all yi's are

needed. The program segment in Figure 4.12 expresses this idea.

A weaker specification for member

Suppose the specification of member is weakened to be

{tue} member(x,y) {y = x E S}. (4.15)

To obtain a multiple-server implementation we use m to tran. .ate the assertions

in (4.15). We get the proof outline

{true} member(x,y) fy = z E U<<kSi}. (4.16)



69

{true}

Y1, - --Yk :false,..., .false
cobegin Iil~j~k

if -'(V1<l$,:5k YI) -

memberi(x, y,)
{yj = x E SA}

(-jA V Yl}

skip
J-jA V yl

1<Ijjk

fi
{y = x ES V (-jA V yI)}

coend

{A (y x E S, V (-iA V j)

{(V yl)=x E U<<kSI}
1<1<k

y :=VI<1<k !/1

( y = x E Uj<j<kSl}

Figure 4.12: A multiple-server imiplemnentation of member for y =x S.



70

{true }

{true}
memberi(x,y)

fi
{Y =:O z E Uj<1<kS1}

Figure 4.13: A multiple-server implementation of member for y . x E S.

In order to make (4.16) valid, we must replace the action member by some com-

position of actions member,. To design this replacement, we assume that the

semantics of memberi is the one given in (4.14) above. It is straightforward to

observe that the proof outline

{true}

memberi(x, y)

{y Y x E S,}I

{y =: x E Ul<i<kSi}

is valid. This proof outline leads to the multiple-server implementation of member

that is given in Figure 4.13.

Comparing the program in Figure 4.12 with the one in Figure 4.13 illustrates

the effect that a specification can have on the efficiency of its implementations. A

designer will often use a strong requirement, such as y = x E S, simply because

a single server happens to provide it, although this strong requirement is not

really used. When implementing a specification in some environment where the

implementation costs for the strong and weak specifications differ (e.g., multiple-

server implementations), use of the weak specification usually has advantages.

Another implementation of member could set y to fase. Although this imple-

mentation is obviously not desirable, the only formal way of preventing such an

implementation from consideration is by specifying properties involving liveness

as well as safety.



71

Finally, the reader might have noticed that the derivation of the multiple-

server implementation of the monotonic-set service was done without a concrete

context of clients. In Section 4.1, where we developed a multiple-server imple-

mentation of a mutual exclusion service, the client context was explicit. The

client context is necessary for arguing validity. Without it, one does not have the

necessary information for proving interference freedom. In other words, prov-

ing validity of PO(h(a)), for some internal action a, is not enough to establish

validity of the proof outline containing PO(h(a)). One must prove that asser-

tions in PO(h(a)) are not interfered with (by other actions in the program where

PO(h(a)) is inserted) and that actions of PO(h(a)) do not interfere with asser-

tions outside PO(h(a)). In general, this can be done only when the context-i.e.,

the clients programs-is given explicitly.



Chapter 5

Conclusion

In this thesis, we have presented a new approach for designing distribu~.ed ser-

vices. We consider a multiple-server implementation of a service to be correct if

it implements a single-server based specification of the service. In presenting such

a specification, one must distinguish the client code, which may not be changed

in different implementations, fiom the code of client stubs and the server, which

may be changed by implementations. This distinction is achieved by classifying

the server and stubs as internal elements of the specification and classifying the

other parts as external elements of the specification. Multiple-server implemen-

tations are derived from a specification by rewriting the client stubs and server

programs, using several servers instead of one. We developed the theory of proof

outlines as specifications and the notion of structural refinement, to support this

derivation process.

We presented a methodology for deriving multiple-server implementations of

services from single-server based specifications of the services. Thus, our method-

ology decomposes the problem of designing a distributed service into two phases:

a single-server phase, during which a single-server implementation of the service

is designed, and a multiple-server phase, during which a multiple-server imple-

mentation of the single-server based specification is developed.

72



73

One advantage of decomposing the design process in this manner is the sep-

aration of concerns that is afforded. In the first phase, one addresses only the

problems inherent in implementing the service; and in the second phase one ad-

dresses only the issues of associated with a distributed implementation. Another

advantage of our two-phased decomposition is that a designer can trace prob-

lems in a multiple-server implementation (correctness as well as performance)

to the single-server design or to the refinement mapping or to choices made in

implementing internal server actions. Without separating the design into two

phases, it is not clear what design decisions are made due to inherent charac-

teristics of the clients/service problem and what design decisions are due to the

strategy adopted to coordinate servers. For example, when using a network that

does not deliver requests in the order they are issued by the clients, certain or-

dering constraints on clients requests may have to be enforred-een when the

service is implemented by a single server. Thus, ordering constraints required by

a multiple-server implementation of a service are necessarily the conjunction of

ordering requirements inherent in the service and ordering requirements needed

for server coordination.

Another benefit of our approach over other approaches for implementing

distributed services is that it allows use of different servers in implementing a

service-we only require that the semantics of individual servers will allow imple-

menting the single-server abstraction. We do not require that individual servers

be exact replicas of each other.

Finally, we should point out that viewing proof outlines as specifications and

the concept of structural refinement are not limited to the problem uf designing

multiple-server implementations of services. These concepts may be used in any

design method that is based on step-wise refinement.



74

5.1 Relation to Other Work

The idea that a data abstraction and its implementations are related by a map-

ping between their state spaces, can be traced to Hoare's paper [Hoa72] on im-

plementing data abstractions.

Dijkstra uses the notion of abstract variables in deriving programs (see [Dij76],

Chapter 8). There, once a solution in terms of some set of abstract variables is

derived and proved correct, it is refined by expressing the abstract variables in

terms of some other, less abstract ones. Such a step requires replacing statements

that use the abstract variables by other statements that manipulate the new set

of less abstract variables.

Gries and Prins [GP85] introduced the notion of a representation invariant-.

-%formula relating implementation states to abstract states. A representation

invariant is used in deriving an implementation for abstract operations from

their specification. The work of Feijen, van Gasteren, and Gries [FvGG87] also

uses representation invariants. In [Pri87] the term coupling invariant, which was

suggested by Feijen, is used instead. An important difference between [Hoa72]

and [GP85] is that a representation invariant characterizes a relation between

states of the implementation and states of the abstraction, whereas in [Hoa72] the

relation is required to be functional. It seems that by adding auxiliary variables

to the implementation state space one can always make this relation functional.

The common theme of the works mentioned above is that in developing a pro-

gram to satisfy a given (input/output) specification, one first derives an abstract

program that provably satisfies the specification, and then, by using a mapping

that expresses the abstract variables in terms of concrete variables, 1 one refines

the abstract program to get a concrete one that satisfies the same specification.

Our work can be viewed as applying these ideas in the context of concurrent pro-

'Abstract and concrete are relative. Even assembly language notation is quite abstract when
one considers the hardware level with its transistors, wires, and clock signals.



II

75

grams, where specifications characterize sequences of states (or actions) rathei

then just pairs of states. Our work however, is explicit in specifying the abstract

(we use the term internal) and concrete (external) elements of the state space,

and restricts transformations to the internal elements only. Also, since our work

allows for explicitly defining certain actions as internal (even if all variables ac-

cessed by those action are external), it supports transformation even in the action

space alone.

The work reported in this thesis was not done as an extension of the ideas

in [Dij76,GP85,Hoa72J, but rather as an attempt of using the notions of spec-

ification and implementation together with proof outlines to aid in developing

mnltiple-server based distributed algorithms. The relationship to the works cited

above only became apparent much later. We believe that exposing this relation-

ship is one of the contributions of our work.

Carrol Morgan [Mor88] also tries to unify the notions of specification and im-

plementation (i.e., program). In Morgan's work, a pair of predicates [p, qJ defines

a specification statement, and any program P for which the triple {p}P{q} is

valid, satisfies (or implements) [p, q]. In our terminology, a specification state-

ment [p, q] corresponds to a triple

{p} (a) {q}

where a has been classified as an internal action. An obvious and major difference

between Morgan's work and ours is that Morgan addresses sequential programs,

whereas we address concurrent programs.

In Unity [CM88], the notion of design by refinerrent is forcefully advocated.

A key idea in the Unity approach is that one first designs a solution to a problem

at a high level of abstraction and later maps this solution to various architectures.

In principle, the mapped versions of the original solution all solve the problem

that the original one did. However, the derivation of the mapped versions is not

driven by a refinement mapping (or some other formal kind of mapping). Other



76

aspects of program transformation that are defined in Unity are the notions of

composing programs by union and by superposition. These transformations have

the property that the transformed program satisfies any property that the original

one did. However, these transformations do not provide an easy (or straightfor-

ward) method for replacing abstract (internal) elements of the original program.

Using an always section, one might express relationship between abstract and

concrete variables but the union and superposition transformations provide no

way of replacing abstract actions (those that manipulate the abstract variables)

by concrete ones. It seems that the only way to construct a concrete program is

by starting with a program in equational form (i.e., no assign section) and then

superposing it with some set of concrete actions. Also, in many cases, it seems

that the original specification must be changed (or augmented) to account for

the details of the superposed program.

Another significant approach to reasoning at several levels of abstraction is

the one based on I/0 Automata [LT87,LM86]. Components of a system can

be specified as I/O automata, and several automata can be comaposed to form

another automaton. Interaction between individual automata is restricted to the

sharing of input/output actions, input actions must be always enabled, and the

set of actions is partitioned into external/internal ones-supporting the notion

of external and internal elements of a specification. The model supports a form

of liveness termed "fair executions". The emphasis of the I/O automata model,

however, is not on program derivations, but on rigorous a posteriori verification.

On .he more practical side of distributed computing, we should point out that

the body of work on the state machine approach on one hand and on manag-

ing replication on the other (in particular [LL86]), strongly motivated our work.

We conjectured that although the algorithms described under state machine ap-

proach look different from the ones described under, say, the Highly Ava. .ble

Distributed Services methodology [LL86], they are fundamentally the same. More



77

specifically, we conjectured that the bond that ties these seemingly different algo-

rithms together is implementing a single-server abstraction. The state machine

approach is a generic method for developing replicated servers that implement a

single-server abstraction, whereas the other replication management schemes are

application d,:pendent methods to do exactly the same. We hope that our work

establishes the validity of this conjecture and provides a unifying framework for

designing distributed clients/service algorithms.

Another branch of research in the area of managing replication that we like to

address is the work of Frank Schmuck in the context of the ISIS project at Cor-

nell [Sch88l. This work investigates the effect of ordering constraints on the kind

of server/clients problem that can be solved in a distributed system. In contrast

to [Sch88, the methodology presented here addresses ordering as well as issueR

of degree of multicasting (i.e., how many server instances should be addressed

for a certain operation). Thus, in our methodology, trade offs between multicast

degree and order can be exploited. In addition, the methodology presented in

this thesis does not restrict servers to be replicas of each other.

5.2 Future Work

This thesis provides a theory for reasoning on distributed algorithms of the

clients/service type. It also presents a methodology for designing multiple-server

implementations of services that is based on this theory. This work can, and

should, be extended in several directions:

o More experience with using the theory and the methodology is needed.

e Support liveness properties.

e Support fault-tolerant implementations.

A more detailed discussion of these points follows.



T

78

5.2.1 Experience

At the initial stages of the research that lead to this thesis, we have developed

a distributed deadlock detection algorithm. This was done in the spirit of our

methodology but certainly not by the letter, and we would like to examine and

probably redevelop the algorithm.

Another problem we would like to address is the design of a multiple-server

implementation of a full-scale set service. The development in Chapter 4 serves

only to demonstrate some basic concepts. We would like to include a delete

operation and explore other options for refinement mappings.

Recently, we started investigating the problem of refining distributed algo-

rithms that tolerate benign type of failures, such as crash failures, to algorithms

that tolerate more severe type of failures, such as omission or even arbitrary fail-

ures. The problem and solutions were presented in [NT88J. Concepts developed

in this thesis can be used in solving this problem, and, based on some preliminary

work, we believe that this might reveal new solutions.

5.2.2 Liveness

Liveness properties are sets of behaviors where every finite prefix of a behavior

can be extended such that the resulting behavior is in the property. In more

intuitive terms, a liveness property characterizes executions in which something

"good" actually happens. A formal discussion of safety and liveness can be found

in [ASS51.

The work in this thesis addresses only safety properties and should be ex-

tended to address liveness as well. Without liveness, one can always derive trivial

implementations-satisfy the safety requirement simply by doing nothing. Tech-

nically, liveness is added to a specification by augmenting the behavior axioms

with liveness axioms. Thus, the principles presented in Chapter 2 hold for live-

ness. The problem is how a theorem like Theorem 2 (implements) should be



79

changed, if at all, so that liveness will be addressed.

5.2.3 Failures

The issue of handling faulty servers was not addressed in this thesis. Our conjec-

ture is that it can be addressed by designing fault-tolerant refinement mappings.

Such a mapping is robust and well-defined even if a certain number of the server

instances are faulty. If we consider the set example of Chapter 4, the refinement

mappings in (4.10) and (4.11) are dcfined in terms of the states of all server

instances and thus become undefined whenever a single server fails. A mapping

that is based on, say, a majority of the servers is more robust.

Note, by reducing the number of server instances needed for the refinement

mapping to be defined, one increases the redundancy of information stored and.

thus increases the degree of fault-tolerance. However, the requirement that the

mapping must be well-defined might have an adverse effect on performance be-

cause updates to this redundant information must be coordinated.



Bibliography

[AL88] M. Abadi and L. Lamport. The existence of refinement mappings.
Technical Report 29, DEC Systems Research Center, 130 Lytton Av-
enue, Palo Alto, CA 94301, August 1988.

[AS85] B. Alpren and F. B. Schneider. Defining iveness. Information Pro-
cessing Letters, 21(4):181-185, October 1985.

[CM88] K. M. Chandy and J. Misra. Parallel P,'ogram Design: A Foundation.'
Addison-Wesley Company, 1988.

jDij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Fall, inc.,
1976.

[FvGG87] W. Feijen, A. van Gasteren, and D. Gries. In-situ inversion of a cyclic
permutation. Information Processing Letters, 24(1):11-17, January
1987.

[GHW85] J. Guttag, J. Homing, and J. Wing. Larch in five easy pieces. Tech-
nical Report 5, Digital Equipment Corporation, Systems Research
Center, 1985.

[Gif79] D. Gifford. Weighted voting for replicated data. In Proce'dings of
the Seventh A CM Symposium on Operating Systems Princitles, pages
150-162, Pacific Grove, California, December 1979. ACM SIGOPS.

[GP8SJ D. Gries and J. Prins. A new notion of encapsulation. In Proceedings
Sigplan 85 Symposium on Language Issues in Programming Environ-
mcnts, pages 131-139. SIGPLAN, 1985.

[Hoa72] C. Hoare. Proof of correctness of data representations. Acta Infor-
matica, (1):271-281, 1972. Also in, Programming Methodology, A
collection of articles by members of IFIP WG2.3, Edited by David
Gries, Springer Verlag, New Yo) - 1978.

80

| | |man



81

[HPSS87] D. Harel, A. Pnueli, J. Schmidt, and R. Sherman. On the formal
semantics of statecharts. In IEEE Symposium on Logic in Computer
Science, pages 54-64, 1987.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, SE-3(2):125-143, March 1977.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, July 1978.

[Lam83] L. Lamport. Specifying concurrent program modules. ACM Trans-
actions on Programming Languages and Systems, 5(2):190-222, April
1983.

[Lam89] L. Lamport. A simple approach to specifying concurrent systems.
Communications of the ACM, 32(1):32-45, January 1989.

[LL86] B. Liskov and R. Ladin. Highly available distributed services and
fault-tolerant distributed garbage collection. In A CM Symposium on
Principles of Distributed Computing, pages 29-39, 1986.

[LM86] N. A. Lynch and M. Merrit. Introduction to the theory of nested
transactions. Technical Report 367, Massachusetts Institute of Tech-
nology, 1986.

[LT871 N. A. Lynch and M. Tuttle. Hierarchical correctness proofs for dis-
tributed algorithms. Master's dissertation, Massachusetts Institute of
Technology, April 1987. Also, Technical Report: mit/lcs/tr-387.

(Mor88] C. Morgan. The specification statement. ACM Transactions on Pro-
gramming Languages and Systems, 10(3):403-419, July 1988.

[MP81] Z. Manna and A. Pnueli. Verification of concurrent programs: The
temporal framework. In R. Boyer and J. Moore, editors, The correct-
ness problem in Computer Science, pages 215-273. Academic Press,
1981.

[NT881 G. Neiger and S. Toueg. Automatically increasing the fault-tolerance
of distributed systems. In Proceedings of the Seventh ACM Sympo-
sium on Principles of Distributed Computing, pages 248-262, Toronto,
Ontario, August 1988. ACM SIGOPS-SIGACT.

[Pri87] J. F. Prins. Partial Implementations in Program Derivation. Ph.D. dis-
sertation, Department of Computer Science, Cornell University, 1987.

[Schi F. B. Schneider. On concurrent programming. To appear. Also as
class notes for CS613, Spring 1989, Cornell University.



82

[Sch86] F. B. Schneider. The state machine approach: a tutorial. Technical
Report 86-800, Department of Computer Science, Cornell University,
December 1986. Revised June 1987.

[Sch88] F. B. Schmuck. The Use of Efficient Broadcast Protocols in Asyn-
chronous Distributed Systems. Ph.D. dissertation, Department of
Computer Science, Cornell University, 1988.

[Spi89] J. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1989.

[Tho79] R. Thomas. A majority consensus approach to concu.rency control
for multiple copy databases. A CM Transactions on Database Systems,
4(2):180-209, June 1979.


